Copyright 2019 The TensorFlow Authors.


In [0]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Create and convert a TensorFlow model

This notebook is designed to demonstrate the process of creating a TensorFlow model and converting it to use with TensorFlow Lite. The model created in this notebook is used in the hello_world sample for TensorFlow Lite for Microcontrollers.

View source on GitHub

Import dependencies

Our first task is to import the dependencies we need. Run the following cell to do so:


In [0]:
# TensorFlow is an open source machine learning library
!pip install tensorflow==2.0
import tensorflow as tf
# Numpy is a math library
import numpy as np
# Matplotlib is a graphing library
import matplotlib.pyplot as plt
# math is Python's math library
import math

Generate data

Deep learning networks learn to model patterns in underlying data. In this notebook, we're going to train a network to model data generated by a sine function. This will result in a model that can take a value, x, and predict its sine, y.

In a real world application, if you needed the sine of x, you could just calculate it directly. However, by training a model to do this, we can demonstrate the basic principles of machine learning.

In the hello_world sample for TensorFlow Lite for Microcontrollers, we'll use this model to control LEDs that light up in a sequence.

The code in the following cell will generate a set of random x values, calculate their sine values, and display them on a graph:


In [0]:
# We'll generate this many sample datapoints
SAMPLES = 1000

# Set a "seed" value, so we get the same random numbers each time we run this
# notebook. Any number can be used here.
SEED = 1337
np.random.seed(SEED)
tf.random.set_seed(SEED)

# Generate a uniformly distributed set of random numbers in the range from
# 0 to 2π, which covers a complete sine wave oscillation
x_values = np.random.uniform(low=0, high=2*math.pi, size=SAMPLES)

# Shuffle the values to guarantee they're not in order
np.random.shuffle(x_values)

# Calculate the corresponding sine values
y_values = np.sin(x_values)

# Plot our data. The 'b.' argument tells the library to print blue dots.
plt.plot(x_values, y_values, 'b.')
plt.show()


Add some noise

Since it was generated directly by the sine function, our data fits a nice, smooth curve.

However, machine learning models are good at extracting underlying meaning from messy, real world data. To demonstrate this, we can add some noise to our data to approximate something more life-like.

In the following cell, we'll add some random noise to each value, then draw a new graph:


In [0]:
# Add a small random number to each y value
y_values += 0.1 * np.random.randn(*y_values.shape)

# Plot our data
plt.plot(x_values, y_values, 'b.')
plt.show()


Split our data

We now have a noisy dataset that approximates real world data. We'll be using this to train our model.

To evaluate the accuracy of the model we train, we'll need to compare its predictions to real data and check how well they match up. This evaluation happens during training (where it is referred to as validation) and after training (referred to as testing) It's important in both cases that we use fresh data that was not already used to train the model.

To ensure we have data to use for evaluation, we'll set some aside before we begin training. We'll reserve 20% of our data for validation, and another 20% for testing. The remaining 60% will be used to train the model. This is a typical split used when training models.

The following code will split our data and then plot each set as a different color:


In [0]:
# We'll use 60% of our data for training and 20% for testing. The remaining 20%
# will be used for validation. Calculate the indices of each section.
TRAIN_SPLIT =  int(0.6 * SAMPLES)
TEST_SPLIT = int(0.2 * SAMPLES + TRAIN_SPLIT)

# Use np.split to chop our data into three parts.
# The second argument to np.split is an array of indices where the data will be
# split. We provide two indices, so the data will be divided into three chunks.
x_train, x_validate, x_test = np.split(x_values, [TRAIN_SPLIT, TEST_SPLIT])
y_train, y_validate, y_test = np.split(y_values, [TRAIN_SPLIT, TEST_SPLIT])

# Double check that our splits add up correctly
assert (x_train.size + x_validate.size + x_test.size) ==  SAMPLES

# Plot the data in each partition in different colors:
plt.plot(x_train, y_train, 'b.', label="Train")
plt.plot(x_validate, y_validate, 'y.', label="Validate")
plt.plot(x_test, y_test, 'r.', label="Test")
plt.legend()
plt.show()


Design a model

We're going to build a model that will take an input value (in this case, x) and use it to predict a numeric output value (the sine of x). This type of problem is called a regression.

To achieve this, we're going to create a simple neural network. It will use layers of neurons to attempt to learn any patterns underlying the training data, so it can make predictions.

To begin with, we'll define two layers. The first layer takes a single input (our x value) and runs it through 16 neurons. Based on this input, each neuron will become activated to a certain degree based on its internal state (its weight and bias values). A neuron's degree of activation is expressed as a number.

The activation numbers from our first layer will be fed as inputs to our second layer, which is a single neuron. It will apply its own weights and bias to these inputs and calculate its own activation, which will be output as our y value.

Note: To learn more about how neural networks function, you can explore the Learn TensorFlow codelabs.

The code in the following cell defines our model using Keras, TensorFlow's high-level API for creating deep learning networks. Once the network is defined, we compile it, specifying parameters that determine how it will be trained:


In [0]:
# We'll use Keras to create a simple model architecture
from tensorflow.keras import layers
model_1 = tf.keras.Sequential()

# First layer takes a scalar input and feeds it through 16 "neurons". The
# neurons decide whether to activate based on the 'relu' activation function.
model_1.add(layers.Dense(16, activation='relu', input_shape=(1,)))

# Final layer is a single neuron, since we want to output a single value
model_1.add(layers.Dense(1))

# Compile the model using a standard optimizer and loss function for regression
model_1.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

# Print a summary of the model's architecture
model_1.summary()


Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 16)                32        
_________________________________________________________________
dense_1 (Dense)              (None, 1)                 17        
=================================================================
Total params: 49
Trainable params: 49
Non-trainable params: 0
_________________________________________________________________

Train the model

Once we've defined the model, we can use our data to train it. Training involves passing an x value into the neural network, checking how far the network's output deviates from the expected y value, and adjusting the neurons' weights and biases so that the output is more likely to be correct the next time.

Training runs this process on the full dataset multiple times, and each full run-through is known as an epoch. The number of epochs to run during training is a parameter we can set.

During each epoch, data is run through the network in multiple batches. Each batch, several pieces of data are passed into the network, producing output values. These outputs' correctness is measured in aggregate and the network's weights and biases are adjusted accordingly, once per batch. The batch size is also a parameter we can set.

The code in the following cell uses the x and y values from our training data to train the model. It runs for 1000 epochs, with 16 pieces of data in each batch. We also pass in some data to use for validation. As you will see when you run the cell, training can take a while to complete:


In [0]:
# Train the model on our training data while validating on our validation set
history_1 = model_1.fit(x_train, y_train, epochs=1000, batch_size=16,
                    validation_data=(x_validate, y_validate))


Train on 600 samples, validate on 200 samples
Epoch 1/1000
600/600 [==============================] - 1s 1ms/sample - loss: 0.7887 - mae: 0.7848 - val_loss: 0.5824 - val_mae: 0.6867
Epoch 2/1000
600/600 [==============================] - 0s 155us/sample - loss: 0.4883 - mae: 0.6194 - val_loss: 0.4742 - val_mae: 0.6056
...Epoch 999/1000
600/600 [==============================] - 0s 149us/sample - loss: 0.1535 - mae: 0.3069 - val_loss: 0.1619 - val_mae: 0.3153
Epoch 1000/1000
600/600 [==============================] - 0s 124us/sample - loss: 0.1524 - mae: 0.3039 - val_loss: 0.1737 - val_mae: 0.3249

Check the training metrics

During training, the model's performance is constantly being measured against both our training data and the validation data that we set aside earlier. Training produces a log of data that tells us how the model's performance changed over the course of the training process.

The following cells will display some of that data in a graphical form:


In [0]:
# Draw a graph of the loss, which is the distance between
# the predicted and actual values during training and validation.
loss = history_1.history['loss']
val_loss = history_1.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()


Look closer at the data

The graph shows the loss (or the difference between the model's predictions and the actual data) for each epoch. There are several ways to calculate loss, and the method we have used is mean squared error. There is a distinct loss value given for the training and the validation data.

As we can see, the amount of loss rapidly decreases over the first 50 epochs, before flattening out. This means that the model is improving and producing more accurate predictions!

Our goal is to stop training when either the model is no longer improving, or when the training loss is less than the validation loss, which would mean that the model has learned to predict the training data so well that it can no longer generalize to new data.

To make the flatter part of the graph more readable, let's skip the first 100 epochs:


In [0]:
# Exclude the first few epochs so the graph is easier to read
SKIP = 100

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()


Further metrics

From the plot, we can see that loss continues to reduce until around 600 epochs, at which point it is mostly stable. This means that there's probably no need to train our network for so long.

However, we can also see that the lowest loss values are around 0.155. This is relatively high. In addition, the validation loss values are consistently higher.

To gain more insight into our model's performance we can plot some more data. This time, we'll plot the mean absolute error, which is another way of measuring how far the network's predictions are from the actual numbers:


In [0]:
# Draw a graph of mean absolute error, which is another way of
# measuring the amount of error in the prediction.
mae = history_1.history['mae']
val_mae = history_1.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')
plt.xlabel('Epochs')
plt.ylabel('MAE')
plt.legend()
plt.show()


This graph of mean absolute error gives us some further clues. We can see that predictions with our training data show consistently lower error than with our validation data, which means that the network has likely overfit, or learned the training data so rigidly that it can't make effective predictions about new data.

In addition, the mean absolute error values are quite high, around ~0.31, which means many of the model's predictions are at least 31% off. A 31% error means we are very far from accurately modelling the sine wave.

To get more insight into what is happening, we can plot our network's predictions for the training data against the expected values:


In [0]:
# Use the model to make predictions from our validation data
predictions = model_1.predict(x_train)

# Plot the predictions along with to the test data
plt.clf()
plt.title('Training data predicted vs actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_train, predictions, 'r.', label='Predicted')
plt.legend()
plt.show()


Oh dear! The graph makes it clear that our network has learned to approximate the sine function in a very limited way. The predictions are highly linear, and only very roughly fit the data.

The rigidity of this fit suggests that the model does not have enough capacity to learn the full complexity of the sine wave function, so it's only able to approximate it in an overly simplistic way. By making our model bigger, we should be able to improve its performance.

Change our model

To make our model bigger, let's add an additional layer of neurons. The following cell redefines our model in the same way as earlier, but with an additional layer of 16 neurons in the middle:


In [0]:
model_2 = tf.keras.Sequential()

# First layer takes a scalar input and feeds it through 16 "neurons". The
# neurons decide whether to activate based on the 'relu' activation function.
model_2.add(layers.Dense(16, activation='relu', input_shape=(1,)))

# The new second layer may help the network learn more complex representations
model_2.add(layers.Dense(16, activation='relu'))

# Final layer is a single neuron, since we want to output a single value
model_2.add(layers.Dense(1))

# Compile the model using a standard optimizer and loss function for regression
model_2.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

# Show a summary of the model
model_2.summary()


Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_2 (Dense)              (None, 16)                32        
_________________________________________________________________
dense_3 (Dense)              (None, 16)                272       
_________________________________________________________________
dense_4 (Dense)              (None, 1)                 17        
=================================================================
Total params: 321
Trainable params: 321
Non-trainable params: 0
_________________________________________________________________

We'll now train the new model. To save time, we'll train for only 600 epochs:


In [0]:
history_2 = model_2.fit(x_train, y_train, epochs=600, batch_size=16,
                    validation_data=(x_validate, y_validate))


Train on 600 samples, validate on 200 samples
Epoch 1/600
600/600 [==============================] - 1s 1ms/sample - loss: 0.6993 - mae: 0.7257 - val_loss: 0.4758 - val_mae: 0.6040
Epoch 2/600
600/600 [==============================] - 0s 153us/sample - loss: 0.4000 - mae: 0.5489 - val_loss: 0.3766 - val_mae: 0.5306
...Epoch 599/600
600/600 [==============================] - 0s 150us/sample - loss: 0.0116 - mae: 0.0860 - val_loss: 0.0104 - val_mae: 0.0804
Epoch 600/600
600/600 [==============================] - 0s 150us/sample - loss: 0.0115 - mae: 0.0859 - val_loss: 0.0104 - val_mae: 0.0806

Evaluate our new model

Each training epoch, the model prints out its loss and mean absolute error for training and validation. You can read this in the output above:

Epoch 600/600
600/600 [==============================] - 0s 143us/sample - loss: 0.0115 - mae: 0.0859 - val_loss: 0.0104 - val_mae: 0.0806

You can see that we've already got a huge improvement - validation loss has dropped from 0.17 to 0.01, and validation MAE has dropped from 0.36 to 0.08.

The following cell will print the same graphs we used to evaluate our original model, but showing our new training history:


In [0]:
# Draw a graph of the loss, which is the distance between
# the predicted and actual values during training and validation.
loss = history_2.history['loss']
val_loss = history_2.history['val_loss']

epochs = range(1, len(loss) + 1)

plt.plot(epochs, loss, 'g.', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

# Exclude the first few epochs so the graph is easier to read
SKIP = 80

plt.clf()

plt.plot(epochs[SKIP:], loss[SKIP:], 'g.', label='Training loss')
plt.plot(epochs[SKIP:], val_loss[SKIP:], 'b.', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

plt.clf()

# Draw a graph of mean absolute error, which is another way of
# measuring the amount of error in the prediction.
mae = history_2.history['mae']
val_mae = history_2.history['val_mae']

plt.plot(epochs[SKIP:], mae[SKIP:], 'g.', label='Training MAE')
plt.plot(epochs[SKIP:], val_mae[SKIP:], 'b.', label='Validation MAE')
plt.title('Training and validation mean absolute error')
plt.xlabel('Epochs')
plt.ylabel('MAE')
plt.legend()
plt.show()


Great results! From these graphs, we can see two exciting things:

  • Metrics are better for validation than training, which means the network is not overfitting
  • The overall loss and MAE are much better than our previous network

The reason the metrics for validation are better than those for training (and not merely identical) is that validation metrics are calculated at the end of each epoch, while training metrics are calculated throughout the epoch, so validation happens on a model that has been trained slightly longer.

This all means our network seems to be performing well! To confirm, let's check its predictions against the test dataset we set aside earlier:


In [0]:
# Calculate and print the loss on our test dataset
loss = model_2.evaluate(x_test, y_test)

# Make predictions based on our test dataset
predictions = model_2.predict(x_test)

# Graph the predictions against the actual values
plt.clf()
plt.title('Comparison of predictions and actual values')
plt.plot(x_test, y_test, 'b.', label='Actual')
plt.plot(x_test, predictions, 'r.', label='Predicted')
plt.legend()
plt.show()


200/1 [================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================] - 0s 71us/sample - loss: 0.0103 - mae: 0.0718

Much better! The evaluation metrics we printed show that the model has a low loss and MAE on the test data, and the predictions line up visually with our data fairly well.

The model isn't perfect; its predictions don't form a smooth sine curve. For instance, the line becomes almost straight when x is between 4 and 5. If we wanted to go further, we could try further increasing the capacity of the model, perhaps using some techniques to defend from overfitting.

However, an important part of machine learning is knowing when to quit, and this model is good enough for our use case - which is to make some LEDs blink in a pleasing pattern.

Convert to TensorFlow Lite

We now have an acceptably accurate model in-memory. However, to use this with TensorFlow Lite for Microcontrollers, we'll need to convert it into the correct format and download it as a file. To do this, we'll use the TensorFlow Lite Converter. The converter outputs a file in a special, space-efficient format for use on memory-constrained devices.

Since this model is going to be deployed on a microcontroller, we want it to be as tiny as possible! One technique for reducing the size of models is called quantization. It reduces the precision of the model's weights, which saves memory, often without much impact on accuracy. Quantized models also run faster, since the calculations required are simpler.

The TensorFlow Lite Converter can apply quantization while it converts the model. In the following cell, we'll convert the model twice—once with quantization, once without:


In [0]:
# Convert the model to the TensorFlow Lite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
tflite_model = converter.convert()

# Save the model to disk
open("sine_model.tflite", "wb").write(tflite_model)

# Convert the model to the TensorFlow Lite format with quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model_2)
# Indicate that we want to perform the default optimizations,
# which includes quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
# Define a generator function that provides our test data's x values
# as a representative dataset, and tell the converter to use it
def representative_dataset_generator():
  for value in x_test:
    # Each scalar value must be inside of a 2D array that is wrapped in a list
    yield [np.array(value, dtype=np.float32, ndmin=2)]
converter.representative_dataset = representative_dataset_generator
# Convert the model
tflite_model = converter.convert()

# Save the model to disk
open("sine_model_quantized.tflite", "wb").write(tflite_model)


Out[0]:
2512

To create a quantized model that runs as efficiently as possible, we have to provide a "representative dataset"—a set of numbers that represent the full range of input values the dataset the model was trained on.

In the above cell, we can use our test dataset's x values as a representative dataset. We define a function, representative_dataset_generator(), that uses the yield operator to return them one by one.

Test the converted models

To prove these models are still accurate after conversion and quantization, we'll use both of them to make predictions and compare these against our test results:


In [0]:
# Instantiate an interpreter for each model
sine_model = tf.lite.Interpreter('sine_model.tflite')
sine_model_quantized = tf.lite.Interpreter('sine_model_quantized.tflite')

# Allocate memory for each model
sine_model.allocate_tensors()
sine_model_quantized.allocate_tensors()

# Get indexes of the input and output tensors
sine_model_input_index = sine_model.get_input_details()[0]["index"]
sine_model_output_index = sine_model.get_output_details()[0]["index"]
sine_model_quantized_input_index = sine_model_quantized.get_input_details()[0]["index"]
sine_model_quantized_output_index = sine_model_quantized.get_output_details()[0]["index"]

# Create arrays to store the results
sine_model_predictions = []
sine_model_quantized_predictions = []

# Run each model's interpreter for each value and store the results in arrays
for x_value in x_test:
  # Create a 2D tensor wrapping the current x value
  x_value_tensor = tf.convert_to_tensor([[x_value]], dtype=np.float32)
  # Write the value to the input tensor
  sine_model.set_tensor(sine_model_input_index, x_value_tensor)
  # Run inference
  sine_model.invoke()
  # Read the prediction from the output tensor
  sine_model_predictions.append(
      sine_model.get_tensor(sine_model_output_index)[0])
  # Do the same for the quantized model
  sine_model_quantized.set_tensor(sine_model_quantized_input_index, x_value_tensor)
  sine_model_quantized.invoke()
  sine_model_quantized_predictions.append(
      sine_model_quantized.get_tensor(sine_model_quantized_output_index)[0])


# See how they line up with the data
plt.clf()
plt.title('Comparison of various models against actual values')
plt.plot(x_test, y_test, 'bo', label='Actual')
plt.plot(x_test, predictions, 'ro', label='Original predictions')
plt.plot(x_test, sine_model_predictions, 'bx', label='Lite predictions')
plt.plot(x_test, sine_model_quantized_predictions, 'gx', label='Lite quantized predictions')
plt.legend()
plt.show()


We can see from the graph that the predictions for the original model, the converted model, and the quantized model are all close enough to be almost indistinguishable. This means that our quantized model is ready to use!

We can print the difference in file size:


In [0]:
import os
basic_model_size = os.path.getsize("sine_model.tflite")
print("Basic model is %d bytes" % basic_model_size)
quantized_model_size = os.path.getsize("sine_model_quantized.tflite")
print("Quantized model is %d bytes" % quantized_model_size)
difference = basic_model_size - quantized_model_size
print("Difference is %d bytes" % difference)


Basic model is 2736 bytes
Quantized model is 2512 bytes
Difference is 224 bytes

Our quantized model is 224 bytes smaller than the original version, which is great - but it's only a minor reduction in size. At around 2.4 kilobytes, this model is already so small that the weights make up a small proportion of the overall size, meaning quantization only has a small effect.

More complex models have many more weights, meaning the space saving from quantization will be much higher, approaching 4x for most sophisticated models.

Regardless, our quantized model will take less time to execute than the original version, which is important on a tiny microcontroller!

Write to a C file

The final step in preparing our model for use with TensorFlow Lite for Microcontrollers is to convert it into a C source file. You can see an example of this format in hello_world/sine_model_data.cc.

To do so, we can use a command line utility named xxd. The following cell runs xxd on our quantized model and prints the output:


In [0]:
# Install xxd if it is not available
!apt-get -qq install xxd
# Save the file as a C source file
!xxd -i sine_model_quantized.tflite > sine_model_quantized.cc
# Print the source file
!cat sine_model_quantized.cc


Selecting previously unselected package xxd.
(Reading database ... 131183 files and directories currently installed.)
Preparing to unpack .../xxd_2%3a8.0.1453-1ubuntu1.1_amd64.deb ...
Unpacking xxd (2:8.0.1453-1ubuntu1.1) ...
Setting up xxd (2:8.0.1453-1ubuntu1.1) ...
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
unsigned char sine_model_quantized_tflite[] = {
  0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x12, 0x00,
  0x1c, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x14, 0x00,
  0x00, 0x00, 0x18, 0x00, 0x12, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
  0x60, 0x09, 0x00, 0x00, 0xa8, 0x02, 0x00, 0x00, 0x90, 0x02, 0x00, 0x00,
  0x3c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x04, 0x00, 0x08, 0x00,
  0x08, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00,
  0x13, 0x00, 0x00, 0x00, 0x6d, 0x69, 0x6e, 0x5f, 0x72, 0x75, 0x6e, 0x74,
  0x69, 0x6d, 0x65, 0x5f, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x00,
  0x0c, 0x00, 0x00, 0x00, 0x48, 0x02, 0x00, 0x00, 0x34, 0x02, 0x00, 0x00,
  0x0c, 0x02, 0x00, 0x00, 0xfc, 0x00, 0x00, 0x00, 0xac, 0x00, 0x00, 0x00,
  0x8c, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00,
  0x2c, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0xfe, 0xfd, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
  0x05, 0x00, 0x00, 0x00, 0x31, 0x2e, 0x35, 0x2e, 0x30, 0x00, 0x00, 0x00,
  0x7c, 0xfd, 0xff, 0xff, 0x80, 0xfd, 0xff, 0xff, 0x84, 0xfd, 0xff, 0xff,
  0x88, 0xfd, 0xff, 0xff, 0x22, 0xfe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
  0x40, 0x00, 0x00, 0x00, 0xfd, 0x13, 0x00, 0x00, 0xd2, 0x0e, 0x00, 0x00,
  0x5e, 0x0e, 0x00, 0x00, 0x28, 0xfe, 0xff, 0xff, 0x30, 0x0e, 0x00, 0x00,
  0x61, 0xe9, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xcd, 0x0a, 0x00, 0x00,
  0x0f, 0x13, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa, 0x0b, 0x00, 0x00,
  0x44, 0x0d, 0x00, 0x00, 0x2c, 0x0c, 0x00, 0x00, 0x91, 0xf0, 0xff, 0xff,
  0xb6, 0xef, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x6e, 0xfe, 0xff, 0xff,
  0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x19, 0x40, 0x4a, 0x52,
  0xb5, 0x95, 0xa8, 0xd3, 0x6a, 0x7f, 0x7a, 0x2a, 0xdd, 0x46, 0xe4, 0xd5,
  0x8a, 0xfe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
  0x15, 0xfa, 0xff, 0xff, 0x2f, 0xe2, 0xff, 0xff, 0x04, 0xe6, 0xff, 0xff,
  0x2c, 0xee, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb7, 0xda, 0xff, 0xff,
  0xe4, 0x06, 0x00, 0x00, 0x86, 0xf2, 0xff, 0xff, 0x2e, 0xee, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x00, 0x70, 0x20, 0x00, 0x00, 0xbd, 0x04, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0xd6, 0xfe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
  0x00, 0x01, 0x00, 0x00, 0x14, 0xc2, 0x10, 0xf6, 0xf7, 0xe0, 0xde, 0xce,
  0xee, 0x96, 0xb2, 0x2d, 0x34, 0x3b, 0x4b, 0x1b, 0xfd, 0x81, 0xd6, 0x0a,
  0x15, 0xca, 0x10, 0xc8, 0xee, 0xff, 0xc7, 0xf9, 0x1e, 0x40, 0xe3, 0xec,
  0x14, 0xac, 0xc7, 0xc7, 0x21, 0x3c, 0xf4, 0xf8, 0xe3, 0x2c, 0xc2, 0xff,
  0xdb, 0x3d, 0x2f, 0x39, 0x1d, 0xf2, 0x2e, 0x01, 0xdb, 0x13, 0x35, 0xe9,
  0xd8, 0xcf, 0x24, 0xda, 0xf4, 0xf7, 0x0b, 0xdc, 0x29, 0xcb, 0xc5, 0x12,
  0x02, 0xcc, 0x22, 0x2d, 0xbf, 0x0e, 0x36, 0x10, 0xf8, 0x35, 0x46, 0x0d,
  0x1c, 0x47, 0x35, 0xda, 0xd8, 0xfc, 0xcc, 0x15, 0x41, 0xe5, 0x36, 0x35,
  0x3b, 0xc8, 0xfd, 0xda, 0xcf, 0x15, 0xe4, 0xc5, 0x00, 0xd6, 0xce, 0xe3,
  0x03, 0x1b, 0xe2, 0x03, 0xc8, 0xde, 0xc6, 0xf2, 0xe6, 0xee, 0xe9, 0xbb,
  0x1b, 0xee, 0x21, 0x07, 0x0b, 0x07, 0x29, 0x3d, 0x13, 0xff, 0xf1, 0x2c,
  0x1b, 0xcc, 0x1b, 0x10, 0x21, 0xd6, 0x10, 0xf9, 0x0b, 0x89, 0xce, 0xc7,
  0xf4, 0x09, 0x3c, 0xe4, 0x21, 0xd1, 0x0d, 0x07, 0xd4, 0xec, 0x09, 0xea,
  0xdf, 0xe6, 0xe7, 0x33, 0xd3, 0xdd, 0xd8, 0xee, 0xea, 0xc2, 0xde, 0xf5,
  0x2c, 0x0d, 0xfc, 0xd2, 0xdd, 0x24, 0x27, 0x0c, 0xea, 0x0e, 0xf2, 0x2d,
  0x18, 0xc2, 0xe5, 0xb4, 0xdd, 0x15, 0xc4, 0x2e, 0xae, 0xe3, 0x20, 0x21,
  0xf3, 0x2d, 0x02, 0xfb, 0x19, 0xb1, 0xf3, 0xcd, 0x1a, 0xf1, 0x2f, 0x22,
  0x10, 0x05, 0x1e, 0xdf, 0xed, 0x3c, 0x24, 0xd6, 0xfb, 0x54, 0x43, 0x0d,
  0xd2, 0x10, 0x00, 0xdd, 0x00, 0x26, 0x02, 0x01, 0xf6, 0xc4, 0xc8, 0xcd,
  0x19, 0x21, 0x1e, 0x35, 0x3b, 0x1a, 0x27, 0xd1, 0xfc, 0x05, 0x0e, 0x11,
  0x06, 0xf8, 0xdf, 0x38, 0x27, 0xfe, 0x26, 0xd5, 0x13, 0xec, 0x39, 0x1d,
  0xcb, 0xc5, 0xd2, 0xd9, 0x0e, 0xe0, 0xdd, 0x09, 0xe2, 0xff, 0xff, 0xff,
  0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xaf, 0x4f, 0x56, 0x1e,
  0xe8, 0x7f, 0xe0, 0xef, 0xc9, 0xdd, 0xe8, 0x42, 0xf7, 0x24, 0x1f, 0xdc,
  0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xb1, 0xe9, 0xff, 0xff,
  0x80, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x54, 0x4f, 0x43, 0x4f,
  0x20, 0x43, 0x6f, 0x6e, 0x76, 0x65, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xbc, 0xf9, 0xff, 0xff,
  0x48, 0x01, 0x00, 0x00, 0x3c, 0x01, 0x00, 0x00, 0x30, 0x01, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x04, 0x01, 0x00, 0x00,
  0xb8, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x1a, 0xff, 0xff, 0xff, 0x02, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x0b, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0xca, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x08, 0x1c, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x03, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
  0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x00, 0x00,
  0x08, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x10, 0x00, 0x0e, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x08, 0x1c, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0xba, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
  0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x0e, 0x00, 0x16, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00,
  0x07, 0x00, 0x10, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08,
  0x24, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00, 0x06, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
  0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x10, 0x00, 0x04, 0x00,
  0x08, 0x00, 0x0c, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x0a, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xdc, 0x04, 0x00, 0x00,
  0x54, 0x04, 0x00, 0x00, 0xc4, 0x03, 0x00, 0x00, 0x54, 0x03, 0x00, 0x00,
  0xd0, 0x02, 0x00, 0x00, 0x4c, 0x02, 0x00, 0x00, 0xe0, 0x01, 0x00, 0x00,
  0x5c, 0x01, 0x00, 0x00, 0xd8, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00,
  0x3c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xd8, 0xff, 0xff, 0xff,
  0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
  0x49, 0x64, 0x65, 0x6e, 0x74, 0x69, 0x74, 0x79, 0x00, 0x00, 0x00, 0x00,
  0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x0c, 0x00, 0x0c, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00,
  0x0c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x0d, 0x00, 0x00, 0x00, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x5f,
  0x69, 0x6e, 0x70, 0x75, 0x74, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xc2, 0xfb, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x02, 0x58, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x28, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xc4, 0xfc, 0xff, 0xff,
  0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x68, 0xf6, 0x91, 0x38, 0x20, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
  0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
  0x73, 0x65, 0x5f, 0x34, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x5f,
  0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x2a, 0xfc, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09,
  0x6c, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x2c, 0xfd, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x35, 0xfc, 0x4c, 0x3c,
  0x34, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
  0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x34,
  0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x2f, 0x52, 0x65, 0x61, 0x64,
  0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x74,
  0x72, 0x61, 0x6e, 0x73, 0x70, 0x6f, 0x73, 0x65, 0x00, 0x00, 0x00, 0x00,
  0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
  0xaa, 0xfc, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x6c, 0x00, 0x00, 0x00,
  0x09, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x9c, 0xfc, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00,
  0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0xd0, 0x49, 0xb6, 0x3b, 0x01, 0x00, 0x00, 0x00,
  0x86, 0x93, 0xb5, 0x3f, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x19, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
  0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x33,
  0x2f, 0x52, 0x65, 0x6c, 0x75, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x2a, 0xfd, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x02, 0x58, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00,
  0x28, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x2c, 0xfe, 0xff, 0xff,
  0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x07, 0xcc, 0xb7, 0x38, 0x20, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
  0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
  0x73, 0x65, 0x5f, 0x33, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x5f,
  0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x92, 0xfd, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09,
  0x6c, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x94, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xa9, 0x9f, 0xea, 0x3b,
  0x34, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
  0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x33,
  0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x2f, 0x52, 0x65, 0x61, 0x64,
  0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65, 0x4f, 0x70, 0x2f, 0x74,
  0x72, 0x61, 0x6e, 0x73, 0x70, 0x6f, 0x73, 0x65, 0x00, 0x00, 0x00, 0x00,
  0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
  0x12, 0xfe, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09, 0x6c, 0x00, 0x00, 0x00,
  0x07, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x04, 0xfe, 0xff, 0xff, 0x30, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00,
  0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0xe4, 0x8a, 0x48, 0x3c, 0x01, 0x00, 0x00, 0x00,
  0x59, 0xc2, 0x47, 0x40, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x19, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69,
  0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32,
  0x2f, 0x52, 0x65, 0x6c, 0x75, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x92, 0xfe, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x02, 0x5c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x2c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x94, 0xff, 0xff, 0xff,
  0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x11, 0xae, 0xbf, 0x38, 0x20, 0x00, 0x00, 0x00,
  0x73, 0x65, 0x71, 0x75, 0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31,
  0x2f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x2f, 0x4d, 0x61, 0x74,
  0x4d, 0x75, 0x6c, 0x5f, 0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0xfe, 0xfe, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x09, 0x78, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00,
  0x34, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x0c, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x00, 0x00,
  0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x2b, 0x85, 0x73, 0x3b, 0x34, 0x00, 0x00, 0x00, 0x73, 0x65, 0x71, 0x75,
  0x65, 0x6e, 0x74, 0x69, 0x61, 0x6c, 0x5f, 0x31, 0x2f, 0x64, 0x65, 0x6e,
  0x73, 0x65, 0x5f, 0x32, 0x2f, 0x4d, 0x61, 0x74, 0x4d, 0x75, 0x6c, 0x2f,
  0x52, 0x65, 0x61, 0x64, 0x56, 0x61, 0x72, 0x69, 0x61, 0x62, 0x6c, 0x65,
  0x4f, 0x70, 0x2f, 0x74, 0x72, 0x61, 0x6e, 0x73, 0x70, 0x6f, 0x73, 0x65,
  0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x8a, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x09,
  0x60, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
  0x04, 0x00, 0x00, 0x00, 0x7c, 0xff, 0xff, 0xff, 0x2c, 0x00, 0x00, 0x00,
  0x20, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  0x01, 0x00, 0x00, 0x00, 0xc9, 0x80, 0xc9, 0x3c, 0x01, 0x00, 0x00, 0x00,
  0x48, 0xb7, 0xc8, 0x40, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x12, 0x00, 0x00, 0x00, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x5f,
  0x69, 0x6e, 0x70, 0x75, 0x74, 0x5f, 0x69, 0x6e, 0x74, 0x38, 0x00, 0x00,
  0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x08, 0x00, 0x07, 0x00, 0x0c, 0x00,
  0x10, 0x00, 0x14, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
  0x6c, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00, 0x04, 0x00, 0x08, 0x00,
  0x0c, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00,
  0x24, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
  0x01, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xb3, 0x24, 0x01, 0x3c,
  0x01, 0x00, 0x00, 0x00, 0x8e, 0xee, 0x80, 0x3f, 0x01, 0x00, 0x00, 0x00,
  0x8e, 0x58, 0x80, 0xbf, 0x0d, 0x00, 0x00, 0x00, 0x49, 0x64, 0x65, 0x6e,
  0x74, 0x69, 0x74, 0x79, 0x5f, 0x69, 0x6e, 0x74, 0x38, 0x00, 0x00, 0x00,
  0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
  0x03, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
  0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x0e, 0x00, 0x07, 0x00,
  0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06,
  0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x06, 0x00, 0x05, 0x00,
  0x06, 0x00, 0x00, 0x00, 0x00, 0x72, 0x0a, 0x00, 0x0c, 0x00, 0x07, 0x00,
  0x00, 0x00, 0x08, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
  0x04, 0x00, 0x00, 0x00
};
unsigned int sine_model_quantized_tflite_len = 2512;

We can either copy and paste this output into our project's source code, or download the file using the collapsible menu on the left hand side of this Colab.