from OECD
In [2]:
countries = ['AUS', 'AUT', 'BEL', 'CAN', 'CZE', 'FIN', 'DEU', 'GRC', 'HUN', 'ISL', 'IRL', 'ITA', 'JPN',
'KOR', 'MEX', 'NLD', 'NZL', 'NOR', 'POL', 'PRT', 'SVK', 'ESP', 'SWE', 'CHE', 'TUR', 'GBR',
'USA', 'CHL', 'COL', 'EST', 'ISR', 'RUS', 'SVN', 'EU28', 'EA19', 'LVA']
male_selfemployment_rates = [12.13246, 15.39631, 18.74896, 9.18314, 20.97991, 18.87097,
13.46109, 39.34802, 13.3356, 16.83681, 25.35344, 29.27118,
12.06516, 27.53898, 31.6945, 19.81751, 17.68489, 9.13669,
24.15699, 22.95656, 19.00245, 21.16428, 13.93171, 8.73181,
30.73483, 19.11255, 7.48383, 25.92752, 52.27145, 12.05042,
15.8517, 8.10048, 19.02411, 19.59021, 19.1384, 14.75558]
female_selfemployment_rates = [8.18631, 10.38607, 11.07756, 8.0069, 12.78461,
9.42761, 7.75637, 29.56566, 8.00408, 7.6802, 8.2774, 18.33204,
9.7313, 23.56431, 32.81488, 13.36444, 11.50045, 4.57464,
17.63891, 13.92678, 10.32846, 12.82925, 6.22453, 9.28793,
38.32216, 10.21743, 5.2896, 25.24502, 49.98448, 6.624,
9.0243, 6.26909, 13.46641, 11.99529, 11.34129, 8.88987]
countries_by_continent = {'AUS':'AUS', 'AUT':'EUR', 'BEL':'EUR', 'CAN':'AM',
'CZE':'EUR', 'FIN':'EUR', 'DEU':'EUR', 'GRC':'EUR',
'HUN':'EUR', 'ISL':'EUR', 'IRL':'EUR', 'ITA':'EUR',
'JPN':'AS', 'KOR':'AS', 'MEX':'AM', 'NLD':'EUR',
'NZL':'AUS', 'NOR':'EUR', 'POL':'EUR', 'PRT':'EUR',
'SVK':'EUR', 'ESP':'EUR', 'SWE':'EUR', 'CHE':'EUR',
'TUR':'EUR', 'GBR':'EUR', 'USA':'AM' , 'CHL':'AM',
'COL':'AM' , 'EST':'EUR', 'ISR':'AS', 'RUS':'EUR',
'SVN':'EUR', 'EU28':'EUR','EA19':'AS', 'LVA':'EUR'}
Calculate for each country the overallselfemployment_rate:
selfemployment_rate:=(male_selfemployment_rates+female_selfemployment_rates)/2
(assumes that #women ~#men)
zip
In [7]:
# TODO
Out[7]:
Calculate
for/of all selfemployment_rates.
In [8]:
# TODO max
Out[8]:
In [9]:
# TODO min
Out[9]:
In [10]:
# TODO sum
Out[10]:
In [12]:
# TODO mean
Out[12]:
In [13]:
# TODO standard deviation
Out[13]:
In [15]:
# TODO
Out[15]:
Find the the sum of all selfemployment_rate
s, which are between 10-15
.
In [18]:
# TODO
Out[18]:
Calculate the mean of the selfemployment-rates per continent.
Consider to use zip
and collections.defaultdict.
In [17]:
# TODO (but not before we start with pandas...or if you are very fast ;-) )
Out[17]: