Note: this notebook requires python3.
This notebook is an introduction to the PlanetOS API data format using the GFS Global Forecast dataset.
API documentation is available at http://docs.planetos.com. If you have questions or comments, join the Planet OS Slack community to chat with our development team.
For general information on usage of IPython/Jupyter and Matplotlib, please refer to their corresponding documentation. https://ipython.org/ and http://matplotlib.org/
In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import dateutil.parser
import datetime
from urllib.request import urlopen, Request
import simplejson as json
GFS is a well known and widely used weather forecast model, developed and used operationally by NCEP (http://www.emc.ncep.noaa.gov/). This model outputs a 15 day global weather forecast on a 12 degree grid.
Let's initialize point coordinates longitude, latitude and make short query (count=10) to get some data.
Important! You'll need to replace apikey
below with your actual Planet OS API key, which you'll find on the Planet OS account settings page.
In [2]:
longitude = 24.+36./60
latitude = 59+24./60
apikey = open('APIKEY').readlines()[0].strip() #'<YOUR API KEY HERE>'
In [3]:
API_url = "http://api.planetos.com/v1/datasets/noaa_gfs_global_sflux_0.12d/point?lon={0}&lat={1}&count=5&verbose=true&apikey={2}".format(longitude,latitude,apikey)
request = Request(API_url)
response = urlopen(request)
API_data = json.loads(response.read())
Let's investigate what we received.
API response is divided into entries, stats and metadata, where stats gives info about available data extent, metadata for gives full information about variables, and entries has actual data.
Data in the entries section is divided into different messages, where each has axes which describes time and location of data; context which describes the coordinate types; and data which gives the actual variables with corresponding values.
To efficiently use the data, we loop through messages and collect data to separate variables.
But first, let's try filtering data by variable type (precipitation, temperature, etc.). For this, list all related variables and their context. Note that not all variables are available for all timesteps!
In [4]:
print("{0:<50} {1}".format("Variable","Context"))
print()
for k,v in set([(j,i['context']) for i in API_data['entries'] for j in i['data'].keys() if 'wind' in j.lower()]):
print("{0:<50} {1}".format(k,v))
Next, select data for time and data axes. As we do not necessarily know what data is available at what timestep, make a separate time variable for each data variable. For easier plotting and analysis, convert the time string to datetime.
In [5]:
time_axes = []
time_axes_precipitation = []
time_axes_wind = []
surface_temperature = []
air2m_temperature = []
precipitation_rate = []
wind_speed = []
for i in API_data['entries']:
#print(i['axes']['time'])
if i['context'] == 'reftime_time_lat_lon':
surface_temperature.append(i['data']['Temperature_surface'])
time_axes.append(dateutil.parser.parse(i['axes']['time']))
if i['context'] == 'reftime_time1_lat_lon':
if 'Precipitation_rate_surface_3_Hour_Average' in i['data']:
precipitation_rate.append(i['data']['Precipitation_rate_surface_3_Hour_Average']*3*3600)
time_axes_precipitation.append(dateutil.parser.parse(i['axes']['time']))
if i['context'] == 'reftime_time_height_above_ground_lat_lon':
air2m_temperature.append(i['data']['Temperature_height_above_ground'])
if i['context'] == 'reftime_time_height_above_ground1_lat_lon':
wind_speed.append(np.sqrt(i['data']['u-component_of_wind_height_above_ground']**2+i['data']['v-component_of_wind_height_above_ground']**2))
time_axes_wind.append(dateutil.parser.parse(i['axes']['time']))
In [6]:
time_axes_precipitation = np.array(time_axes_precipitation)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(time_axes,surface_temperature,color='k',label='Surface temperature')
ax.plot(time_axes,air2m_temperature,color='r',label='2m temperature')
ax_r = ax.twinx()
ax_r.bar(time_axes_precipitation-datetime.timedelta(seconds=1800),precipitation_rate,width=0.1,alpha=0.4)
fig.autofmt_xdate()
plt.show()
We could improve this plot by extending the time axes. To do this, increase the count
parameter in the API call.
Also note that only three contexts are needed for the data of interest. If we explicitly request those contexts and skip unnecessary ones, we can improve the API response time. Or we can just request needed variables, it will be even faster.
Note: Be careful with reference times, because in some cases two reference times may be available!
In [7]:
#API_url = "http://api.planetos.com/v1/datasets/noaa_gfs_global_sflux_0.12d/point?lon={0}&lat={1}&count=1000&apikey={2}&contexts=reftime_time_lat_lon,reftime_time_height_above_ground_lat_lon,reftime_time1_lat_lon".format(longitude,latitude,apikey)
API_url = "http://api.planetos.com/v1/datasets/noaa_gfs_global_sflux_0.12d/point?lon={0}&lat={1}&count=1000&apikey={2}&var=Temperature_surface,Temperature_height_above_ground,Downward_Short-Wave_Radiation_Flux_surface_3_Hour_Average,Precipitation_rate_surface_3_Hour_Average".format(longitude,latitude,apikey)
request2 = Request(API_url)
response2 = urlopen(request2)
API_data2 = json.loads(response2.read())
Let's find the available reference times in the response...
In [8]:
reftimes = set()
for i in API_data2['entries']:
reftimes.update([i['axes']['reftime']])
reftimes=list(reftimes)
In [9]:
reftimes
Out[9]:
We use the earlier reftime in this example, but a later reftime may provide a more recent forecast.
In [10]:
if len(reftimes)>1:
reftime = reftimes[0] if dateutil.parser.parse(reftimes[0])<dateutil.parser.parse(reftimes[1]) else reftimes[1]
else:
reftime = reftimes[0]
Now create a new plot with the longer time scale and one more variable...
In [11]:
time_2mt = []
time_surft = []
time_precipitation = []
time_surfrad = []
surface_temperature = []
air2m_temperature = []
precipitation_rate = []
surfrad = []
for i in API_data2['entries']:
#print(i['context'])
if i['context'] == 'reftime_time_lat_lon' and i['axes']['reftime']==reftime:
surface_temperature.append(i['data']['Temperature_surface']-273.15)
time_surft.append(dateutil.parser.parse(i['axes']['time']))
if i['context'] == 'reftime_time_height_above_ground_lat_lon' and i['axes']['reftime']==reftime:
if 'Temperature_height_above_ground' in i['data']:
air2m_temperature.append(i['data']['Temperature_height_above_ground']-273.15)
time_2mt.append(dateutil.parser.parse(i['axes']['time']))
if i['context'] == 'reftime_time1_lat_lon' and i['axes']['reftime'] == reftime:
if 'Downward_Short-Wave_Radiation_Flux_surface_3_Hour_Average' in i['data']:
surfrad.append(i['data']['Downward_Short-Wave_Radiation_Flux_surface_3_Hour_Average'])
time_surfrad.append(dateutil.parser.parse(i['axes']['time']))
precipitation_rate.append(i['data']['Precipitation_rate_surface_3_Hour_Average']*3*3600)
time_precipitation.append(dateutil.parser.parse(i['axes']['time']))
In [12]:
time_precipitation = np.array(time_precipitation)
surfrad=np.array(surfrad)
fig = plt.figure(figsize=(15,10))
ax = fig.add_subplot(111)
plt.plot(time_surft,surface_temperature,color='k',label='Surface temperature')
plt.plot(time_2mt,air2m_temperature,color='r',label='2m temperature')
lg = plt.legend(framealpha=0.2)
ax.set_ylabel('Temperature, Celsius')
ax_r = ax.twinx()
ax_r.bar(time_precipitation-datetime.timedelta(seconds=1800),precipitation_rate,width=0.1,alpha=0.4,label='precipitation')
ax_r.fill_between(time_surfrad,surfrad/np.amax(surfrad)*np.amax(precipitation_rate),color='gray',alpha=0.1,label='surface radiation')
ax_r.set_ylabel('Precipitation, mm 3hr')
lg.get_frame().set_alpha(0.5)
fig.autofmt_xdate()
In [ ]: