Interpolation Exercise 1


In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

In [2]:
from scipy.interpolate import interp1d

2D trajectory interpolation

The file trajectory.npz contains 3 Numpy arrays that describe a 2d trajectory of a particle as a function of time:

  • t which has discrete values of time t[i].
  • x which has values of the x position at those times: x[i] = x(t[i]).
  • x which has values of the y position at those times: y[i] = y(t[i]).

Load those arrays into this notebook and save them as variables x, y and t:


In [21]:
"""with np.load('trajectory.npz') as data:  #http://docs.scipy.org/doc/numpy/reference/generated/numpy.load.html
    t = data['t']
    x =data['x']
    y =data['x']"""

file=np.load('trajectory.npz')
t=file['t']
x=file['x']
y=file['y']

In [22]:
assert isinstance(x, np.ndarray) and len(x)==40
assert isinstance(y, np.ndarray) and len(y)==40 
assert isinstance(t, np.ndarray) and len(t)==40

Use these arrays to create interpolated functions $x(t)$ and $y(t)$. Then use those functions to create the following arrays:

  • newt which has 200 points between $\{t_{min},t_{max}\}$.
  • newx which has the interpolated values of $x(t)$ at those times.
  • newy which has the interpolated values of $y(t)$ at those times.

In [23]:
xt= interp1d(t,x, kind='cubic')
yt= interp1d(t,y, kind='cubic')
newt= np.linspace(t.min(),t.max(),200)

newx = xt(newt)
newy= yt(newt)

#newx=interp1d(x,newt, kind='cubic')
#newy=interp1d(y,newt, kind='cubic')

In [ ]:


In [24]:
assert newt[0]==t.min()
assert newt[-1]==t.max()
assert len(newt)==200
assert len(newx)==200
assert len(newy)==200

In [ ]:

Make a parametric plot of $\{x(t),y(t)\}$ that shows the interpolated values and the original points:

  • For the interpolated points, use a solid line.
  • For the original points, use circles of a different color and no line.
  • Customize you plot to make it effective and beautiful.

In [25]:
plt.plot(newx, newy, color='b', label='interpolated')
plt.plot(x, y, color='g',marker='o', linestyle='', label='original');
plt.legend();
plt.xlabel('x')
plt.ylabel('f(x)')
plt.ylim(-.9,1.1)
plt.title('Interpolated Trajectory Data')


Out[25]:
<matplotlib.text.Text at 0x7fc146115128>

In [26]:
assert True # leave this to grade the trajectory plot

In [ ]:


In [ ]:


In [ ]:


In [ ]: