Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release).
In [ ]:
!pip install -I "phoebe>=2.1,<2.2"
As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details.
In [1]:
%matplotlib inline
In [2]:
import phoebe
from phoebe import u # units
import numpy as np
import matplotlib.pyplot as plt
logger = phoebe.logger()
b = phoebe.default_star(starA='sun')
In [3]:
print b['sun']
Let's set all the values of the sun based on the nominal solar values provided in the units package.
In [4]:
b.set_value('teff', 1.0*u.solTeff)
b.set_value('requiv', 1.0*u.solRad)
b.set_value('mass', 1.0*u.solMass)
b.set_value('period', 24.47*u.d)
And so that we can compare with measured/expected values, we'll observe the sun from the earth - with an inclination of 23.5 degrees and at a distance of 1 AU.
In [5]:
b.set_value('incl', 23.5*u.deg)
b.set_value('distance', 1.0*u.AU)
Checking on the set values, we can see the values were converted correctly to PHOEBE's internal units.
In [6]:
print b.get_quantity('teff')
print b.get_quantity('requiv')
print b.get_quantity('mass')
print b.get_quantity('period')
print b.get_quantity('incl')
print b.get_quantity('distance')
Let's add a light curve so that we can compute the flux at a single time and compare it to the expected value. We'll set the passband luminosity to be the nominal value for the sun. We'll also add a mesh dataset so that we can plot the temperature distributions and test the size of the sun verse known values.
In [7]:
b.add_dataset('lc', times=[0.], pblum=1*u.solLum)
b.add_dataset('mesh', times=[0.], columns=['teffs', 'loggs', 'rs'])
Out[7]:
In [8]:
b.run_compute(irrad_method='none', distortion_method='rotstar')
Out[8]:
In [9]:
afig, mplfig = b['mesh'].plot(fc='teffs', x='xs', y='ys', show=True)
In [10]:
afig, mplfig = b['mesh'].plot(fc='teffs', x='us', y='vs', show=True)
In [11]:
print "teff: {} ({})".format(b.get_value('teffs').mean(),
b.get_value('teff', context='component'))
For a rotating sphere, the minimum radius should occur at the pole and the maximum should occur at the equator.
In [13]:
print "rmin (pole): {} ({})".format(b.get_value('rs').min(),
b.get_value('requiv', context='component'))
In [14]:
print "rmax (equator): {} (>{})".format(b.get_value('rs').max(),
b.get_value('requiv', context='component'))
In [15]:
print "logg: {}".format(b.get_value('loggs').mean())
In [16]:
print "flux: {}".format(b.get_quantity('fluxes@model')[0])
In [ ]: