In this example, we'll reproduce Figure 8 in the misalignment release paper (Horvat et al. 2018).
Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release).
In [ ]:
!pip install -I "phoebe>=2.1,<2.2"
As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details.
In [1]:
%matplotlib inline
In [2]:
import phoebe
from phoebe import u # units
import numpy as np
import matplotlib.pyplot as plt
logger = phoebe.logger('error')
b = phoebe.default_binary()
We'll adopt and set parameters from the following sources:
In [3]:
Nt = 2000
b.set_value('t0_supconj@orbit', 2442233.3481)
b.set_value('vgamma@system', 9.1) # [km/s] (Albrecht et al. 2009)
b.set_value('ntriangles@primary', Nt)
b.set_value('ntriangles@secondary', Nt)
mass1 = 5.1 # [M_sun] (Albrecht et al. 2009)
mass2 = 4.4 # [M_sun] (Albrecht et al. 2009)
P = 10.550164 # [d] (Albrecht et al. 2009)
mu_sun = 1.32712440018e20 # = G M_sun [m3 s^-2], Wiki Standard_gravitational_parameter
R_sun = 695700000 # [m] Wiki Sun
sma = (mu_sun*(mass1 + mass2)*(P*86400/(2*np.pi))**2)**(1./3)/R_sun # Kepler equation
incl = 89.3 # deg (Albrecht et al. 2009)
vp_sini = 109 # [km/s] (Albrecht et al. 2009)
vs_sini = 117 # [km/s] (Albrecht et al. 2009)
Rp = 2.68 # [R_sun] (Albrecht et al. 2009)
Rs = 2.48 # [R_sun] (Albrecht et al. 2009)
sini = np.sin(np.pi*incl/180)
vp = vp_sini*86400/sini # [km/s]
vs = vs_sini*86400/sini # [km/s]
Pp = 2*np.pi*Rp*R_sun/1000/vp
Ps = 2*np.pi*Rs*R_sun/1000/vs
Fp = P/Pp
Fs = P/Ps
b.set_value('q', mass2/mass1)
b.set_value('incl@binary', incl) # (Albrecht et al. 2009)
b.set_value('sma@binary', sma) # calculated
b.set_value('ecc@binary', 0.489) # (Albrecht et al. 2009)
b.set_value('per0@binary', 330.2) # (Albrecht et al. 2009)
b.set_value('period@binary', P) # calculated
b.set_value('syncpar@primary', Fp) # calculated
b.set_value('syncpar@secondary', Fs) # calculated
b.set_value('requiv@primary', Rp) # !!! requiv (Albrecht et al. 2009)
b.set_value('requiv@secondary', Rs) # !!! requiv (Albrecht et al. 2009)
b.set_value('teff@primary', 17300) # Wiki DI_Herculis
b.set_value('teff@secondary', 15400) # Wiki DI_Herculis
b.set_value('gravb_bol@primary', 1.)
b.set_value('gravb_bol@secondary', 1.)
# beta = 72 deg (Albrecht et al. 2009)
dOmega_p = 72
di_p = 62 - incl
b.set_value('pitch@primary', di_p) # di
b.set_value('yaw@primary', dOmega_p) # dOmega
# beta = - 84 deg (Albrecht et al. 2009)
dOmega_s = -84
di_s = 100 - incl
b.set_value('pitch@secondary', di_s) # di
b.set_value('yaw@secondary', dOmega_s) # dOmega
b.set_value_all('atm','extern_planckint')
b.set_value_all('irrad_method', 'none')
In [4]:
n = 200
times = b.to_time(np.linspace(-0.05, 1.05, n))
b.add_dataset('lc', times=times, dataset='lc01', ld_func='logarithmic', ld_coeffs = [0.5,0.5])
b.add_dataset('rv', times=times, dataset='rv01', ld_func='logarithmic', ld_coeffs = [0.5,0.5])
Out[4]:
In [5]:
b.run_compute(ltte=False)
Out[5]:
In [6]:
afig, mplfig = b.plot(kind='lc', show=True)
In [7]:
afig, mplfig = b.plot(kind='rv', show=True)
In [ ]: