Numpy

NumPy, short for Numerical Python, is the fundamental package required for high performance scientific computing and data analysis.

While NumPy by itself does not provide very much high-level data analytical func- tionality, having an understanding of NumPy arrays and array-oriented computing will help you use tools like pandas much more effectively.


In [2]:
import numpy

In [ ]:
dir(numpy)

In [ ]:
help(numpy.zeros)

In [5]:
a = numpy.zeros( (3,5) )

In [6]:
a


Out[6]:
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.]])

In [8]:
a[(2,2)] = 3
a


Out[8]:
array([[ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  3.,  0.,  0.]])

In [10]:
import numpy as np

1-D array


In [12]:
b = np.array( [2., 4., 6.])
b


Out[12]:
array([ 2.,  4.,  6.])

In [14]:
b = np.array( range(10) )
b


Out[14]:
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [15]:
b = np.array( (2., 4., 6.) )
b


Out[15]:
array([ 2.,  4.,  6.])

2-D array (matrix)


In [16]:
m = np.array( [(2., 3., 4.), (5., 6., 7.)])
m


Out[16]:
array([[ 2.,  3.,  4.],
       [ 5.,  6.,  7.]])

In [18]:
m = np.array( [[2., 3., 4.], [5., 6., 7.]] )
m


Out[18]:
array([[ 2.,  3.,  4.],
       [ 5.,  6.,  7.]])

In [21]:
m * 3


Out[21]:
array([[  6.,   9.,  12.],
       [ 15.,  18.,  21.]])

In [20]:
m + m


Out[20]:
array([[  4.,   6.,   8.],
       [ 10.,  12.,  14.]])

In [ ]: