In [1]:
%matplotlib inline
import pickle
import numpy
import matplotlib.pyplot as plt
import sys
sys.path.append("../tools/")
from feature_format import featureFormat, targetFeatureSplit
from sklearn.cluster import KMeans
In [2]:
def Draw(pred, features, poi, mark_poi=False, name="image.png", f1_name="feature 1", f2_name="feature 2"):
""" some plotting code designed to help you visualize your clusters """
### plot each cluster with a different color--add more colors for
### drawing more than 4 clusters
colors = ["b", "c", "k", "m", "g"]
for ii, pp in enumerate(pred):
plt.scatter(features[ii][0], features[ii][1], color = colors[pred[ii]])
### if you like, place red stars over points that are POIs (just for funsies)
if mark_poi:
for ii, pp in enumerate(pred):
if poi[ii]:
plt.scatter(features[ii][0], features[ii][1], color="r", marker="*")
plt.xlabel(f1_name)
plt.ylabel(f2_name)
plt.savefig(name)
plt.show()
In [3]:
### load in the dict of dicts containing all the data on each person in the dataset
data_dict = pickle.load( open("../final_project/final_project_dataset.pkl", "r") )
### there's an outlier--remove it!
data_dict.pop("TOTAL", 0)
Out[3]:
In [4]:
### the input features we want to use
### can be any key in the person-level dictionary (salary, director_fees, etc.)
feature_1 = "salary"
feature_2 = "exercised_stock_options"
poi = "poi"
features_list = [poi, feature_1, feature_2]
data = featureFormat(data_dict, features_list )
poi, finance_features = targetFeatureSplit( data )
In [5]:
for f1, f2 in finance_features:
plt.scatter( f1, f2 )
plt.show()
In [6]:
features_list = ["poi", feature_1, feature_2]
data2 = featureFormat(data_dict, features_list )
poi, finance_features = targetFeatureSplit( data2 )
clf = KMeans(n_clusters=2)
pred = clf.fit_predict( finance_features )
Draw(pred, finance_features, poi, name="clusters_before_scaling.pdf", f1_name=feature_1, f2_name=feature_2)
In [12]:
feature_1 = "salary"
feature_2 = "exercised_stock_options"
poi = "poi"
feature_3 = "total_payments"
features_list = [poi, feature_1, feature_2, feature_3]
data = featureFormat(data_dict, features_list )
poi, finance_features = targetFeatureSplit( data )
plt.subplot(1,2,1)
for f1, f2, f3 in finance_features:
plt.scatter( f1, f3 )
plt.subplot(1,2,2)
for f1, f2, f3 in finance_features:
plt.scatter( f2, f3 )
plt.show()
In [8]:
clf = KMeans(n_clusters=2)
pred = clf.fit_predict( finance_features )
try:
Draw(pred, finance_features, poi, mark_poi=False, name="clusters.pdf", f1_name=feature_1, f2_name=feature_2)
except NameError:
print "no predictions object named pred found, no clusters to plot"
One single-point cluster vs. everything else (demonstrating the importance of feature scaling).
In [15]:
stock_options = [data_dict[p]["exercised_stock_options"] for
p in data_dict.keys() if
data_dict[p]["exercised_stock_options"] != 'NaN']
print 'max:',max(stock_options)
print 'min:',min(stock_options)
#print max(data_dict["exercised_stock_options"])
In [16]:
salaries = [data_dict[p]["salary"] for
p in data_dict.keys() if
data_dict[p]["salary"] != 'NaN']
print 'max:',max(salaries)
print 'min:',min(salaries)