Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur purus mi, sollicitudin ac justo a, dapibus ultrices dolor. Curabitur id eros mattis, tincidunt ligula at, condimentum urna. Morbi accumsan, risus eget porta consequat, tortor nibh blandit dui, in sodales quam elit non erat. Aenean lorem dui, lacinia a metus eu, accumsan dictum urna. Sed a egestas mauris, non porta nisi. Suspendisse eu lacinia neque. Morbi gravida eros non augue pharetra, condimentum auctor purus porttitor.



In [1]:

a = 1




In [2]:

a




Out[2]:

1




In [3]:

b = 'pew'




In [4]:

b




Out[4]:

'pew'




In [5]:

%matplotlib inline




In [6]:

import matplotlib.pyplot as plt




In [7]:

from pylab import *




In [8]:

x = linspace(0, 5, 10)
y = x ** 2




In [9]:

figure()
plot(x, y, 'r')
xlabel('x')
ylabel('y')
title('title')
show()







In [10]:

import numpy as np




In [11]:

num_points = 130
y = np.random.random(num_points)
plt.plot(y)




Out[11]:

[<matplotlib.lines.Line2D at 0x1084b2050>]



This is some text, here comes some latex



In [12]:

%%latex
\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}




\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}



Apos?



In [1]:

import re




In [2]:

text = 'foo bar\t baz \tqux'




In [3]:

re.split('\s+', text)




Out[3]:

['foo', 'bar', 'baz', 'qux']




In [ ]: