This Jupyter notebook assumes that the R kernel for Jupyter (IRkernel) has been installed; see https://irkernel.github.io/installation/
In [20]:
library(survey)
Set the following so that it points to the directory with the (text) data files:
In [21]:
basedir <- "./data/"
Logistic regression for fraction of galaxies with bars as a function of stellar mass $\log (M_{\star} / M_{\odot})$, using S4G galaxies in Sample 1 (spirals at $D \leq 25$ Mpc) with stellar masses between $\log M_{\star} = 8.5$ and 11, with $V/V_{\rm max}$ weighting to account for S4G angular diameter limit.
Load data into table and then Survey-package design object
In [22]:
ff <- paste(basedir, "barpresence_vs_logmstar_for_R_w25_m8.5-11.txt", sep="")
logmstarBarWTable <- read.table(ff, header=TRUE)
logmstarBarWDesign <- svydesign(ids=~0, data=logmstarBarWTable, weights=~weight)
length(logmstarBarWTable$bar)
Standard linear logistic regression: bar fraction versus log of stellar mass
In [23]:
logMstarWFit1 <- svyglm(bar ~ logmstar, design=logmstarBarWDesign, family=quasibinomial)
summary(logMstarWFit1)
Quadratic linear logistic regression: bar fraction versus log of stellar mass + square of same
In [24]:
logMstarWFit2 <- svyglm(bar ~ logmstar + I(logmstar^2), design=logmstarBarWDesign, family=quasibinomial)
summary(logMstarWFit2)
In [25]:
AIC(logMstarWFit1)
AIC(logMstarWFit2)
In [26]:
747.73 - 762.586
Same as previous section, but now we do logistic regression versus both stellar mass and $g - r$ color, using a subsample of Sample 1 galaxies with color data.
In [27]:
ff <- paste(basedir, "barpresence_vs_logmstar-gmr_for_R_w25.txt", sep="")
logmstargmrBarWTable <- read.table(ff, header=TRUE)
gmrBarWDesign <- svydesign(ids=~0, data=logmstargmrBarWTable, weights=~weight)
length(logmstargmrBarWTable$bar)
In [29]:
gmrWFit_gmr <- svyglm(bar ~ gmr, design=gmrBarWDesign, family=quasibinomial)
summary(gmrWFit_gmr)
In [30]:
# same sample, vs logmstar (linear) only
gmrWFit_logmstar <- svyglm(bar ~ logmstar, design=gmrBarWDesign, family=quasibinomial)
summary(gmrWFit_logmstar)
In [31]:
# same sample, vs logmstar (quadratic) only
gmrWFit_logmstar2 <- svyglm(bar ~ logmstar + I(logmstar^2), design=gmrBarWDesign, family=quasibinomial)
summary(gmrWFit_logmstar2)
In [32]:
gmrWFit_gmrlogmstar2 <- svyglm(bar ~ logmstar + I(logmstar^2) + gmr, design=gmrBarWDesign, family=quasibinomial)
summary(gmrWFit_gmrlogmstar2)
In [33]:
AIC(gmrWFit_gmr)
AIC(gmrWFit_logmstar)
AIC(gmrWFit_logmstar2)
AIC(gmrWFit_gmrlogmstar2)
Same as previous section, but now we do logistic regression versus both log of stellar mass and log of gas mass ratio $f{\rm gas} = M_{\rm HI} / M_{\star}$, using a subsample of Sample 1 galaxies with H I data.
In [34]:
basedir <- "/Users/erwin/Documents/Working/Projects/Project_BarSizes/"
ff <- paste(basedir, "barpresence_vs_logmstar-logfgas_for_R_w25.txt", sep="")
logMstarfgasBarWTable <- read.table(ff, header=TRUE)
logMstarfgasBarWDesign <- svydesign(ids=~0, data=logMstarfgasBarWTable, weights=~weight)
length(logMstarfgasBarWTable$bar)
In [35]:
logMstarlogfgasWFit_fgas <- svyglm(bar ~ logfgas, design=logMstarfgasBarWDesign, family=quasibinomial)
summary(logMstarlogfgasWFit_fgas)
In [36]:
logMstarlogfgasWFit_logmstar <- svyglm(bar ~ logmstar, design=logMstarfgasBarWDesign, family=quasibinomial)
summary(logMstarlogfgasWFit_logmstar)
In [37]:
logMstarlogfgasWFit_logmstar2 <- svyglm(bar ~ logmstar + I(logmstar^2), design=logMstarfgasBarWDesign, family=quasibinomial)
summary(logMstarlogfgasWFit_logmstar2)
In [38]:
logMstarlogfgasWFit_fgaslogmstar2 <- svyglm(bar ~ logmstar + I(logmstar^2) + logfgas, design=logMstarfgasBarWDesign, family=quasibinomial)
summary(logMstarlogfgasWFit_fgaslogmstar2)
In [39]:
AIC(logMstarlogfgasWFit_fgas)
AIC(logMstarlogfgasWFit_logmstar)
AIC(logMstarlogfgasWFit_logmstar2)
AIC(logMstarlogfgasWFit_fgaslogmstar2)