linkage(y[, method, metric]) Performs hierarchical/agglomerative clustering on the condensed distance matrix y.
http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html#module-scipy.cluster.hierarchy
In [ ]:
import numpy as np
import scipy.cluster.hierarchy as hac
import matplotlib.pyplot as plt
from db import connect_db
from position import Position, Cluster
In [20]:
# Connecting to database
cur= connect_db("bahia")
recurso = "tetra:12082781"
limit = 10
cmd = "SELECT latitud, longitud, UNIX_TIMESTAMP(fecha) FROM posicionesgps WHERE latitud <> 0 and longitud <> 0 and recurso=\"{0}\" LIMIT {1};".format(recurso, limit)
cmd
Out[20]:
In [21]:
cur.execute(cmd)
Out[21]:
In [22]:
a = []
In [23]:
for pos in cur.fetchall():
a.append(pos)
In [24]:
len(a)
Out[24]:
In [25]:
a = np.array(a)
z = hac.linkage(a, method=method)
In [15]:
fig, axes23 = plt.subplots(2, 3)
for method, axes in zip(['single', 'complete'], axes23):
z = hac.linkage(a, method=method)
# Plotting
axes[0].plot(range(1, len(z)+1), z[::-1, 2])
knee = np.diff(z[::-1, 2], 2)
axes[0].plot(range(2, len(z)), knee)
num_clust1 = knee.argmax() + 2
knee[knee.argmax()] = 0
num_clust2 = knee.argmax() + 2
axes[0].text(num_clust1, z[::-1, 2][num_clust1-1], 'possible\n<- knee point')
part1 = hac.fcluster(z, num_clust1, 'maxclust')
part2 = hac.fcluster(z, num_clust2, 'maxclust')
clr = ['#2200CC' ,'#D9007E' ,'#FF6600' ,'#FFCC00' ,'#ACE600' ,'#0099CC' ,
'#8900CC' ,'#FF0000' ,'#FF9900' ,'#FFFF00' ,'#00CC01' ,'#0055CC']
for part, ax in zip([part1, part2], axes[1:]):
for cluster in set(part):
ax.scatter(a[part == cluster, 0], a[part == cluster, 1],
color=clr[cluster])
m = '\n(method: {})'.format(method)
plt.setp(axes[0], title='Screeplot{}'.format(m), xlabel='partition',
ylabel='{}\ncluster distance'.format(m))
plt.setp(axes[1], title='{} Clusters'.format(num_clust1))
plt.setp(axes[2], title='{} Clusters'.format(num_clust2))
plt.tight_layout()
plt.show()
In [ ]: