In [1]:
from sklearn import tree
from dtreeviz.trees import *
from sklearn.datasets import load_boston
boston = load_boston()
X_train = boston.data
y_train = boston.target
testX = X_train[5,:]
regr = tree.DecisionTreeRegressor(max_depth=3)
regr = regr.fit(X_train, y_train)
viz = dtreeviz(regr, X_train, y_train, target_name='price',
feature_names=boston.feature_names,
X = testX)
viz
Out[1]: