In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
Download the .txt
data for the "Yearly mean total sunspot number [1700 - now]" from the SILSO website. Upload the file to the same directory as this notebook.
In [3]:
import os
assert os.path.isfile('yearssn.dat')
Use np.loadtxt
to read the data into a NumPy array called data
. Then create two new 1d NumPy arrays named years
and ssc
that have the sequence of year and sunspot counts.
In [4]:
data=np.loadtxt('yearssn.dat') #loads the file from SILSo into an array
year=np.array(data[:,0]) #takes each element from the data and puts into
ssc=np.array(data[:,1]) #a 1d array
In [5]:
assert len(year)==315
assert year.dtype==np.dtype(float)
assert len(ssc)==315
assert ssc.dtype==np.dtype(float)
Make a line plot showing the sunspot count as a function of year.
In [13]:
plt.figure(figsize=(15,1))
plt.plot(year,ssc, "b")
ax=plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.xlabel("Year")
plt.ylabel("Sunspot Count")
plt.title("SILSO Sunspots vs Year")
plt.xlim(right=2020)
plt.xticks(range(1700,2025,25))
#add more detail and still add the scalling
Out[13]:
In [57]:
assert True # leave for grading
Describe the choices you have made in building this visualization and how they make it effective.
I labeled both axes and gaves the graph a title allowing for the viewer to understand the data they are presented. I also removed the box as it was not useful to interpreting the information and providing visual clutter. I formatted the ticks along the x axis to increment every 25 years.
Now make 4 subplots, one for each century in the data set. This approach works well for this dataset as it allows you to maintain mild slopes while limiting the overall width of the visualization. Perform similar customizations as above:
In [15]:
year1=year[0:100]
ssc1=ssc[0:100]
year2=year[100:200]
ssc2=ssc[100:200]
year3=year[200:300]
ssc3=ssc[200:300]
year4=year[300:315]
ssc4=ssc[300:315]
f=plt.figure(figsize=(12,8))
plt.subplot(4,1,1)
plt.plot(year1,ssc1)
plt.title('18th Century')
plt.yticks([0,80,160])
plt.ylabel('Sunspots')
ax=plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.subplot(4,1,2)
plt.plot(year2,ssc2)
plt.title('19th Century')
plt.yticks([0,70,140])
plt.ylabel('Sunspots')
ax=plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.subplot(4,1,3)
plt.plot(year3,ssc3)
plt.title("20th Century")
plt.yticks([0,100,200])
plt.ylabel('Sunspots')
ax=plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.subplot(4,1,4)
plt.plot(year4,ssc4)
plt.xlabel('Year')
plt.title('21st Century')
plt.yticks([0,60,120])
plt.ylabel('Sunspots')
ax=plt.gca()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.tight_layout()
In [ ]:
assert True # leave for grading