In [1]:
# Default values: N=27, epsilon=1e-2, move='sequential', tolerance=0
%run unittest_mpmath_eigen_markov.py
test_left_eigen_vec (__main__.TestComputeStationary) ... FAIL
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 27 , epsilon = 0.01
v =
[1.78461891799335e-21 2.42134225054374e-22 1.58178136970194e-23 6.62387508250393e-25 1.99714826608159e-26 4.61652363013834e-28 8.50615744246595e-30 1.28233529283406e-31 1.61097398597244e-33 1.70901762889315e-35 6.12170114669528e-33 1.88270136175183e-30 4.99543427984819e-28 1.14702856348822e-25 2.28258684134156e-23 3.93670143903374e-21 5.87552689775785e-19 7.56560492893643e-17 8.36419656032417e-15 7.88435581028452e-13 6.27594722498647e-11 4.16304499257436e-9 2.25939805506081e-7 9.77435245558917e-6 0.000324182689777041 0.00774148263187573 0.118504234134098 0.873420096025387]
TOL = 0
ok
======================================================================
FAIL: test_left_eigen_vec (__main__.TestComputeStationary)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/oyama/Dropbox/Development/mpmath_eigen_markov/unittest_mpmath_eigen_markov.py", line 134, in test_left_eigen_vec
self.assertTrue(mp.norm(v - v*mp.mp.matrix(P), 'inf') <= TOL)
AssertionError: False is not true
----------------------------------------------------------------------
Ran 4 tests in 0.020s
FAILED (failures=1)
In [2]:
%run unittest_mpmath_eigen_markov.py --tolerance=1e-24
test_left_eigen_vec (__main__.TestComputeStationary) ... ok
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 27 , epsilon = 0.01
v =
[1.78461891799335e-21 2.42134225054374e-22 1.58178136970194e-23 6.62387508250393e-25 1.99714826608159e-26 4.61652363013834e-28 8.50615744246595e-30 1.28233529283406e-31 1.61097398597244e-33 1.70901762889315e-35 6.12170114669528e-33 1.88270136175183e-30 4.99543427984819e-28 1.14702856348822e-25 2.28258684134156e-23 3.93670143903374e-21 5.87552689775785e-19 7.56560492893643e-17 8.36419656032417e-15 7.88435581028452e-13 6.27594722498647e-11 4.16304499257436e-9 2.25939805506081e-7 9.77435245558917e-6 0.000324182689777041 0.00774148263187573 0.118504234134098 0.873420096025387]
TOL = 1e-24
ok
----------------------------------------------------------------------
Ran 4 tests in 0.013s
OK
In [3]:
%run unittest_mpmath_eigen_markov.py --N=3 --epsilon=1e-14
test_left_eigen_vec (__main__.TestComputeStationary) ... ok
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 3 , epsilon = 1e-14
P =
[[ 1.00000000e+00 5.00000000e-15 0.00000000e+00 0.00000000e+00]
[ 3.33333333e-01 4.99600361e-15 6.66666667e-01 0.00000000e+00]
[ 0.00000000e+00 3.33333333e-15 6.66666667e-01 3.33333333e-01]
[ 0.00000000e+00 0.00000000e+00 5.00000000e-15 1.00000000e+00]]
v =
[4.99999999999992e-15 7.49999999999992e-29 1.49999999999998e-14 0.99999999999998]
TOL = 0
ok
----------------------------------------------------------------------
Ran 4 tests in 0.003s
OK
In [4]:
%run unittest_mpmath_eigen_markov.py --move='simultaneous' --N=5 --epsilon=1e-15
test_left_eigen_vec (__main__.TestComputeStationary) ... FAIL
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 5 , epsilon = 1e-15
P =
[[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]]
v =
[1.89911354915195e-31 4.74778387287991e-46 1.71056941445903e-45 3.08148791101961e-30 2.77555756156289e-15 0.999999999999997]
TOL = 0
FAIL
======================================================================
FAIL: test_left_eigen_vec (__main__.TestComputeStationary)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/oyama/Dropbox/Development/mpmath_eigen_markov/unittest_mpmath_eigen_markov.py", line 134, in test_left_eigen_vec
self.assertTrue(mp.norm(v - v*mp.mp.matrix(P), 'inf') <= TOL)
AssertionError: False is not true
======================================================================
FAIL: test_sum_one (__main__.TestComputeStationary)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/oyama/Dropbox/Development/mpmath_eigen_markov/unittest_mpmath_eigen_markov.py", line 128, in test_sum_one
self.assertTrue(abs(sum(self.v) - 1) <= TOL)
AssertionError: False is not true
----------------------------------------------------------------------
Ran 4 tests in 0.003s
FAILED (failures=2)
In [5]:
%run unittest_mpmath_eigen_markov.py --move='simultaneous' --N=5 --epsilon=1e-15 --tolerance=1e-30
test_left_eigen_vec (__main__.TestComputeStationary) ... ok
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 5 , epsilon = 1e-15
P =
[[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]]
v =
[1.89911354915195e-31 4.74778387287991e-46 1.71056941445903e-45 3.08148791101961e-30 2.77555756156289e-15 0.999999999999997]
TOL = 1e-30
FAIL
======================================================================
FAIL: test_sum_one (__main__.TestComputeStationary)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/oyama/Dropbox/Development/mpmath_eigen_markov/unittest_mpmath_eigen_markov.py", line 128, in test_sum_one
self.assertTrue(abs(sum(self.v) - 1) <= TOL)
AssertionError: False is not true
----------------------------------------------------------------------
Ran 4 tests in 0.003s
FAILED (failures=1)
In [6]:
%run unittest_mpmath_eigen_markov.py --move='simultaneous' --N=5 --epsilon=1e-15 --tolerance=1e-15
test_left_eigen_vec (__main__.TestComputeStationary) ... ok
test_markov_matrix (__main__.TestComputeStationary) ... ok
test_nonnegative (__main__.TestComputeStationary) ... ok
test_sum_one (__main__.TestComputeStationary) ...
N = 5 , epsilon = 1e-15
P =
[[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 1.00000000e+00 2.50000000e-15 2.50000000e-30 1.25000000e-45
3.12500000e-61 3.12500000e-77]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]
[ 5.27109897e-77 4.74778387e-61 1.71056941e-45 3.08148791e-30
2.77555756e-15 1.00000000e+00]]
v =
[1.89911354915195e-31 4.74778387287991e-46 1.71056941445903e-45 3.08148791101961e-30 2.77555756156289e-15 0.999999999999997]
TOL = 1e-15
ok
----------------------------------------------------------------------
Ran 4 tests in 0.002s
OK
In [7]:
import platform
print platform.platform()
Darwin-13.3.0-x86_64-i386-64bit
In [8]:
import sys
print sys.version
2.7.8 (default, Jul 2 2014, 10:14:46)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)]
In [9]:
import numpy
print numpy.__version__
1.8.1
In [10]:
import mpmath
print mpmath.__version__
0.19
Content source: oyamad/mpmath_eigen_markov
Similar notebooks: