Accompanying code examples of the book "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python" by Sebastian Raschka. All code examples are released under the MIT license. If you find this content useful, please consider supporting the work by buying a copy of the book.

Other code examples and content are available on GitHub. The PDF and ebook versions of the book are available through Leanpub.


In [1]:
%load_ext watermark
%watermark -a 'Sebastian Raschka' -v -p tensorflow


Sebastian Raschka 

CPython 3.6.1
IPython 6.0.0

tensorflow 1.2.0

Model Zoo -- Convolutional Neural Network (VGG16)

The VGG-16 Convolutional Neural Network Architecture [1] implemented in TensorFlow and trained on Cifar-10 [2, 3] images.

References:


In [2]:
##########################
### DATASET
##########################

from helper import download_and_extract_cifar
from helper import Cifar10Loader

dest = download_and_extract_cifar('./cifar-10')
cifar = Cifar10Loader(dest, normalize=True, 
                      zero_center=True,
                      channel_mean_center=False)
cifar.num_train

X, y = cifar.load_test()
half = cifar.num_test // 2
X_test, X_valid = X[:half], X[half:]
y_test, y_valid = y[:half], y[half:]

del X, y


Found existing cifar-10-python.tar.gz (162.6 Mb)
Extracting cifar-10-python.tar.gz ...

In [3]:
import tensorflow as tf
import numpy as np

tf.test.gpu_device_name()


Out[3]:
'/gpu:0'

In [4]:
##########################
### SETTINGS
##########################

# Hyperparameters
learning_rate = 0.001
training_epochs = 30
batch_size = 32

# Other
print_interval = 200

# Architecture
image_width, image_height, image_depth = 32, 32, 3
n_classes = 10


##########################
### WRAPPER FUNCTIONS
##########################

def conv_layer(input, input_channels, output_channels, 
               kernel_size, strides, scope, padding='SAME'):
    with tf.name_scope(scope):
        weights_shape = kernel_size + [input_channels, output_channels]
        weights = tf.Variable(tf.truncated_normal(shape=weights_shape,
                                                  mean=0.0,
                                                  stddev=0.1,
                                                  dtype=tf.float32),
                                                  name='weights')
        biases = tf.Variable(tf.zeros(shape=[output_channels]),
                             name='biases')
        conv = tf.nn.conv2d(input=input,
                            filter=weights,
                            strides=strides,
                            padding=padding,
                            name='convolution')
        out = tf.nn.bias_add(conv, biases, name='logits')
        out = tf.nn.relu(out, name='activation')
        return out


def fc_layer(input, output_nodes, scope,
             activation=None, seed=None):
    with tf.name_scope(scope):
        shape = int(np.prod(input.get_shape()[1:]))
        flat_input = tf.reshape(input, [-1, shape])
        weights = tf.Variable(tf.truncated_normal(shape=[shape,
                                                         output_nodes],
                                                  mean=0.0,
                                                  stddev=0.1,
                                                  dtype=tf.float32,
                                                  seed=seed),
                                                  name='weights')
        biases = tf.Variable(tf.zeros(shape=[output_nodes]),
                             name='biases')
        act = tf.nn.bias_add(tf.matmul(flat_input, weights), biases, 
                             name='logits')

        if activation is not None:
            act = activation(act, name='activation')

        return act


##########################
### GRAPH DEFINITION
##########################

g = tf.Graph()
with g.as_default():

    # Input data
    tf_x = tf.placeholder(tf.float32, [None, image_width, image_height, image_depth], name='features')
    tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')
     
    ##########################
    ### VGG16 Model
    ##########################

    # =========
    # BLOCK 1
    # =========
    conv_layer_1 = conv_layer(input=tf_x,
                              input_channels=3,
                              output_channels=64,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv1')
    
    conv_layer_2 = conv_layer(input=conv_layer_1,
                              input_channels=64,
                              output_channels=64,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv2')    
    
    pool_layer_1 = tf.nn.max_pool(conv_layer_2,
                                  ksize=[1, 2, 2, 1], 
                                  strides=[1, 2, 2, 1],
                                  padding='SAME',
                                  name='pool1') 
    # =========
    # BLOCK 2
    # =========
    conv_layer_3 = conv_layer(input=pool_layer_1,
                              input_channels=64,
                              output_channels=128,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv3')    
    
    conv_layer_4 = conv_layer(input=conv_layer_3,
                              input_channels=128,
                              output_channels=128,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv4')    
    
    pool_layer_2 = tf.nn.max_pool(conv_layer_4,
                                  ksize=[1, 2, 2, 1], 
                                  strides=[1, 2, 2, 1],
                                  padding='SAME',
                                  name='pool2') 
    # =========
    # BLOCK 3
    # =========
    conv_layer_5 = conv_layer(input=pool_layer_2,
                              input_channels=128,
                              output_channels=256,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv5')        
    
    conv_layer_6 = conv_layer(input=conv_layer_5,
                              input_channels=256,
                              output_channels=256,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv6')      
    
    conv_layer_7 = conv_layer(input=conv_layer_6,
                              input_channels=256,
                              output_channels=256,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv7')
    
    pool_layer_3 = tf.nn.max_pool(conv_layer_7,
                                  ksize=[1, 2, 2, 1], 
                                  strides=[1, 2, 2, 1],
                                  padding='SAME',
                                  name='pool3') 
    # =========
    # BLOCK 4
    # =========
    conv_layer_8 = conv_layer(input=pool_layer_3,
                              input_channels=256,
                              output_channels=512,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv8')      
    
    conv_layer_9 = conv_layer(input=conv_layer_8,
                              input_channels=512,
                              output_channels=512,
                              kernel_size=[3, 3],
                              strides=[1, 1, 1, 1],
                              scope='conv9')     
    
    conv_layer_10 = conv_layer(input=conv_layer_9,
                               input_channels=512,
                               output_channels=512,
                               kernel_size=[3, 3],
                               strides=[1, 1, 1, 1],
                               scope='conv10')   
    
    pool_layer_4 = tf.nn.max_pool(conv_layer_10,
                                  ksize=[1, 2, 2, 1], 
                                  strides=[1, 2, 2, 1],
                                  padding='SAME',
                                  name='pool4') 
    # =========
    # BLOCK 5
    # =========
    conv_layer_11 = conv_layer(input=pool_layer_4,
                               input_channels=512,
                               output_channels=512,
                               kernel_size=[3, 3],
                               strides=[1, 1, 1, 1],
                               scope='conv11')   
    
    conv_layer_12 = conv_layer(input=conv_layer_11,
                               input_channels=512,
                               output_channels=512,
                               kernel_size=[3, 3],
                               strides=[1, 1, 1, 1],
                               scope='conv12')   

    conv_layer_13 = conv_layer(input=conv_layer_12,
                               input_channels=512,
                               output_channels=512,
                               kernel_size=[3, 3],
                               strides=[1, 1, 1, 1],
                               scope='conv13') 
    
    pool_layer_5 = tf.nn.max_pool(conv_layer_12,
                                  ksize=[1, 2, 2, 1], 
                                  strides=[1, 2, 2, 1],
                                  padding='SAME',
                                  name='pool5')     
    # ===========
    # CLASSIFIER
    # ===========
    
    fc_layer_1 = fc_layer(input=pool_layer_5, 
                          output_nodes=4096,
                          activation=tf.nn.relu,
                          scope='fc1')
    
    fc_layer_2 = fc_layer(input=fc_layer_1, 
                          output_nodes=4096,
                          activation=tf.nn.relu,
                          scope='fc2')

    out_layer = fc_layer(input=fc_layer_2, 
                         output_nodes=n_classes,
                         activation=None,
                         scope='output_layer')
    
    # Loss and optimizer
    loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=tf_y)
    cost = tf.reduce_mean(loss, name='cost')
    
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train = optimizer.minimize(cost, name='train')

    # Prediction
    correct_prediction = tf.equal(tf.argmax(tf_y, 1), tf.argmax(out_layer, 1), 
                                  name='correct_predictions')
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')

    # Saver to save session for reuse
    saver = tf.train.Saver()

    
##########################
### TRAINING & EVALUATION
##########################

with tf.Session(graph=g) as sess:
    sess.run(tf.global_variables_initializer())

    for epoch in range(training_epochs):
        
        avg_cost = 0.
        mbatch_cnt = 0
        for batch_x, batch_y in cifar.load_train_epoch(shuffle=True, batch_size=batch_size):
            
            mbatch_cnt += 1
            _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,
                                                            'targets:0': batch_y})
            avg_cost += c

            if not mbatch_cnt % print_interval:
                print("Minibatch: %04d | Cost: %.3f" % (mbatch_cnt, c))
                

        # ===================
        # Training Accuracy
        # ===================
        n_predictions, n_correct = 0, 0
        for batch_x, batch_y in cifar.load_train_epoch(batch_size=batch_size):
        
            p = sess.run('correct_predictions:0', 
                         feed_dict={'features:0': batch_x,
                                    'targets:0':  batch_y})
            n_correct += np.sum(p)
            n_predictions += p.shape[0]
        train_acc = n_correct / n_predictions
        
        
        # ===================
        # Validation Accuracy
        # ===================
        #valid_acc = sess.run('accuracy:0', feed_dict={'features:0': X_valid,
        #                                              'targets:0': y_valid})
        # ---------------------------------------
        # workaround for GPUs with <= 4 Gb memory
        n_predictions, n_correct = 0, 0
        indices = np.arange(y_valid.shape[0])
        chunksize = 500
        for start_idx in range(0, indices.shape[0] - chunksize + 1, chunksize):
            index_slice = indices[start_idx:start_idx + chunksize]
            p = sess.run('correct_predictions:0', 
                         feed_dict={'features:0': X_valid[index_slice],
                                    'targets:0': y_valid[index_slice]})
            n_correct += np.sum(p)
            n_predictions += p.shape[0]
        valid_acc = n_correct / n_predictions
        # ---------------------------------------
                                                
        print("Epoch: %03d | AvgCost: %.3f" % (epoch + 1, avg_cost / mbatch_cnt), end="")
        print(" | Train/Valid ACC: %.3f/%.3f" % (train_acc, valid_acc))
    
    saver.save(sess, save_path='./convnet-vgg16.ckpt')


Minibatch: 0200 | Cost: 9.004
Minibatch: 0400 | Cost: 3.877
Minibatch: 0600 | Cost: 3.213
Minibatch: 0800 | Cost: 2.410
Minibatch: 1000 | Cost: 2.384
Minibatch: 1200 | Cost: 2.250
Minibatch: 1400 | Cost: 2.352
Epoch: 001 | AvgCost: 1897.994 | Train/Valid ACC: 0.152/0.145
Minibatch: 0200 | Cost: 2.433
Minibatch: 0400 | Cost: 2.426
Minibatch: 0600 | Cost: 2.202
Minibatch: 0800 | Cost: 2.221
Minibatch: 1000 | Cost: 2.112
Minibatch: 1200 | Cost: 2.182
Minibatch: 1400 | Cost: 2.382
Epoch: 002 | AvgCost: 2.219 | Train/Valid ACC: 0.176/0.168
Minibatch: 0200 | Cost: 2.145
Minibatch: 0400 | Cost: 2.089
Minibatch: 0600 | Cost: 2.221
Minibatch: 0800 | Cost: 1.903
Minibatch: 1000 | Cost: 2.296
Minibatch: 1200 | Cost: 2.169
Minibatch: 1400 | Cost: 2.164
Epoch: 003 | AvgCost: 2.168 | Train/Valid ACC: 0.166/0.173
Minibatch: 0200 | Cost: 2.094
Minibatch: 0400 | Cost: 2.015
Minibatch: 0600 | Cost: 2.217
Minibatch: 0800 | Cost: 2.028
Minibatch: 1000 | Cost: 2.265
Minibatch: 1200 | Cost: 2.103
Minibatch: 1400 | Cost: 2.060
Epoch: 004 | AvgCost: 2.144 | Train/Valid ACC: 0.189/0.188
Minibatch: 0200 | Cost: 2.310
Minibatch: 0400 | Cost: 1.986
Minibatch: 0600 | Cost: 1.844
Minibatch: 0800 | Cost: 2.183
Minibatch: 1000 | Cost: 2.040
Minibatch: 1200 | Cost: 2.004
Minibatch: 1400 | Cost: 1.987
Epoch: 005 | AvgCost: 2.075 | Train/Valid ACC: 0.180/0.181
Minibatch: 0200 | Cost: 1.849
Minibatch: 0400 | Cost: 1.898
Minibatch: 0600 | Cost: 1.996
Minibatch: 0800 | Cost: 1.968
Minibatch: 1000 | Cost: 1.987
Minibatch: 1200 | Cost: 2.003
Minibatch: 1400 | Cost: 2.041
Epoch: 006 | AvgCost: 2.010 | Train/Valid ACC: 0.176/0.176
Minibatch: 0200 | Cost: 2.419
Minibatch: 0400 | Cost: 2.109
Minibatch: 0600 | Cost: 1.902
Minibatch: 0800 | Cost: 1.937
Minibatch: 1000 | Cost: 1.813
Minibatch: 1200 | Cost: 1.990
Minibatch: 1400 | Cost: 1.662
Epoch: 007 | AvgCost: 1.913 | Train/Valid ACC: 0.256/0.251
Minibatch: 0200 | Cost: 2.036
Minibatch: 0400 | Cost: 1.690
Minibatch: 0600 | Cost: 1.866
Minibatch: 0800 | Cost: 1.574
Minibatch: 1000 | Cost: 1.886
Minibatch: 1200 | Cost: 1.720
Minibatch: 1400 | Cost: 1.937
Epoch: 008 | AvgCost: 1.769 | Train/Valid ACC: 0.270/0.267
Minibatch: 0200 | Cost: 1.569
Minibatch: 0400 | Cost: 1.800
Minibatch: 0600 | Cost: 1.541
Minibatch: 0800 | Cost: 1.499
Minibatch: 1000 | Cost: 1.596
Minibatch: 1200 | Cost: 1.994
Minibatch: 1400 | Cost: 1.283
Epoch: 009 | AvgCost: 1.653 | Train/Valid ACC: 0.343/0.337
Minibatch: 0200 | Cost: 1.415
Minibatch: 0400 | Cost: 1.648
Minibatch: 0600 | Cost: 1.487
Minibatch: 0800 | Cost: 1.454
Minibatch: 1000 | Cost: 1.266
Minibatch: 1200 | Cost: 1.267
Minibatch: 1400 | Cost: 1.589
Epoch: 010 | AvgCost: 1.526 | Train/Valid ACC: 0.469/0.459
Minibatch: 0200 | Cost: 1.585
Minibatch: 0400 | Cost: 1.449
Minibatch: 0600 | Cost: 1.340
Minibatch: 0800 | Cost: 1.297
Minibatch: 1000 | Cost: 1.767
Minibatch: 1200 | Cost: 1.088
Minibatch: 1400 | Cost: 1.159
Epoch: 011 | AvgCost: 1.342 | Train/Valid ACC: 0.536/0.517
Minibatch: 0200 | Cost: 1.408
Minibatch: 0400 | Cost: 1.510
Minibatch: 0600 | Cost: 1.424
Minibatch: 0800 | Cost: 1.019
Minibatch: 1000 | Cost: 1.069
Minibatch: 1200 | Cost: 1.465
Minibatch: 1400 | Cost: 1.289
Epoch: 012 | AvgCost: 1.203 | Train/Valid ACC: 0.590/0.576
Minibatch: 0200 | Cost: 0.670
Minibatch: 0400 | Cost: 0.993
Minibatch: 0600 | Cost: 0.998
Minibatch: 0800 | Cost: 1.103
Minibatch: 1000 | Cost: 1.127
Minibatch: 1200 | Cost: 0.969
Minibatch: 1400 | Cost: 1.216
Epoch: 013 | AvgCost: 1.111 | Train/Valid ACC: 0.634/0.603
Minibatch: 0200 | Cost: 1.262
Minibatch: 0400 | Cost: 1.147
Minibatch: 0600 | Cost: 0.660
Minibatch: 0800 | Cost: 0.970
Minibatch: 1000 | Cost: 0.716
Minibatch: 1200 | Cost: 1.017
Minibatch: 1400 | Cost: 1.264
Epoch: 014 | AvgCost: 1.036 | Train/Valid ACC: 0.638/0.617
Minibatch: 0200 | Cost: 0.846
Minibatch: 0400 | Cost: 0.843
Minibatch: 0600 | Cost: 0.792
Minibatch: 0800 | Cost: 0.718
Minibatch: 1000 | Cost: 1.141
Minibatch: 1200 | Cost: 1.024
Minibatch: 1400 | Cost: 0.877
Epoch: 015 | AvgCost: 0.949 | Train/Valid ACC: 0.683/0.654
Minibatch: 0200 | Cost: 0.463
Minibatch: 0400 | Cost: 0.854
Minibatch: 0600 | Cost: 0.820
Minibatch: 0800 | Cost: 0.952
Minibatch: 1000 | Cost: 0.819
Minibatch: 1200 | Cost: 0.648
Minibatch: 1400 | Cost: 1.030
Epoch: 016 | AvgCost: 0.872 | Train/Valid ACC: 0.738/0.697
Minibatch: 0200 | Cost: 0.862
Minibatch: 0400 | Cost: 1.010
Minibatch: 0600 | Cost: 0.991
Minibatch: 0800 | Cost: 0.664
Minibatch: 1000 | Cost: 0.604
Minibatch: 1200 | Cost: 0.879
Minibatch: 1400 | Cost: 0.791
Epoch: 017 | AvgCost: 0.823 | Train/Valid ACC: 0.753/0.698
Minibatch: 0200 | Cost: 0.823
Minibatch: 0400 | Cost: 0.619
Minibatch: 0600 | Cost: 0.764
Minibatch: 0800 | Cost: 1.127
Minibatch: 1000 | Cost: 0.623
Minibatch: 1200 | Cost: 0.796
Minibatch: 1400 | Cost: 0.694
Epoch: 018 | AvgCost: 0.771 | Train/Valid ACC: 0.769/0.709
Minibatch: 0200 | Cost: 0.431
Minibatch: 0400 | Cost: 0.688
Minibatch: 0600 | Cost: 0.406
Minibatch: 0800 | Cost: 0.906
Minibatch: 1000 | Cost: 0.607
Minibatch: 1200 | Cost: 0.445
Minibatch: 1400 | Cost: 0.660
Epoch: 019 | AvgCost: 0.721 | Train/Valid ACC: 0.780/0.707
Minibatch: 0200 | Cost: 0.740
Minibatch: 0400 | Cost: 0.542
Minibatch: 0600 | Cost: 0.435
Minibatch: 0800 | Cost: 0.953
Minibatch: 1000 | Cost: 0.954
Minibatch: 1200 | Cost: 0.544
Minibatch: 1400 | Cost: 0.855
Epoch: 020 | AvgCost: 0.672 | Train/Valid ACC: 0.779/0.717
Minibatch: 0200 | Cost: 0.432
Minibatch: 0400 | Cost: 0.376
Minibatch: 0600 | Cost: 0.477
Minibatch: 0800 | Cost: 0.476
Minibatch: 1000 | Cost: 0.950
Minibatch: 1200 | Cost: 0.468
Minibatch: 1400 | Cost: 0.595
Epoch: 021 | AvgCost: 0.636 | Train/Valid ACC: 0.818/0.737
Minibatch: 0200 | Cost: 1.114
Minibatch: 0400 | Cost: 0.519
Minibatch: 0600 | Cost: 0.623
Minibatch: 0800 | Cost: 0.721
Minibatch: 1000 | Cost: 0.880
Minibatch: 1200 | Cost: 0.654
Minibatch: 1400 | Cost: 0.378
Epoch: 022 | AvgCost: 0.596 | Train/Valid ACC: 0.825/0.742
Minibatch: 0200 | Cost: 0.541
Minibatch: 0400 | Cost: 0.478
Minibatch: 0600 | Cost: 0.642
Minibatch: 0800 | Cost: 0.871
Minibatch: 1000 | Cost: 0.710
Minibatch: 1200 | Cost: 0.682
Minibatch: 1400 | Cost: 0.671
Epoch: 023 | AvgCost: 0.663 | Train/Valid ACC: 0.776/0.712
Minibatch: 0200 | Cost: 0.498
Minibatch: 0400 | Cost: 0.379
Minibatch: 0600 | Cost: 0.535
Minibatch: 0800 | Cost: 0.435
Minibatch: 1000 | Cost: 0.562
Minibatch: 1200 | Cost: 0.777
Minibatch: 1400 | Cost: 0.635
Epoch: 024 | AvgCost: 0.539 | Train/Valid ACC: 0.853/0.759
Minibatch: 0200 | Cost: 0.331
Minibatch: 0400 | Cost: 0.419
Minibatch: 0600 | Cost: 0.497
Minibatch: 0800 | Cost: 0.619
Minibatch: 1000 | Cost: 0.620
Minibatch: 1200 | Cost: 0.196
Minibatch: 1400 | Cost: 0.648
Epoch: 025 | AvgCost: 0.498 | Train/Valid ACC: 0.849/0.738
Minibatch: 0200 | Cost: 0.247
Minibatch: 0400 | Cost: 0.263
Minibatch: 0600 | Cost: 0.183
Minibatch: 0800 | Cost: 0.251
Minibatch: 1000 | Cost: 0.251
Minibatch: 1200 | Cost: 0.447
Minibatch: 1400 | Cost: 0.443
Epoch: 026 | AvgCost: 0.469 | Train/Valid ACC: 0.850/0.744
Minibatch: 0200 | Cost: 0.390
Minibatch: 0400 | Cost: 0.325
Minibatch: 0600 | Cost: 0.404
Minibatch: 0800 | Cost: 0.363
Minibatch: 1000 | Cost: 0.655
Minibatch: 1200 | Cost: 0.195
Minibatch: 1400 | Cost: 0.647
Epoch: 027 | AvgCost: 0.485 | Train/Valid ACC: 0.855/0.751
Minibatch: 0200 | Cost: 0.580
Minibatch: 0400 | Cost: 0.177
Minibatch: 0600 | Cost: 0.317
Minibatch: 0800 | Cost: 0.249
Minibatch: 1000 | Cost: 0.287
Minibatch: 1200 | Cost: 0.282
Minibatch: 1400 | Cost: 0.429
Epoch: 028 | AvgCost: 0.416 | Train/Valid ACC: 0.887/0.759
Minibatch: 0200 | Cost: 0.233
Minibatch: 0400 | Cost: 0.118
Minibatch: 0600 | Cost: 0.218
Minibatch: 0800 | Cost: 0.195
Minibatch: 1000 | Cost: 0.208
Minibatch: 1200 | Cost: 0.188
Minibatch: 1400 | Cost: 0.509
Epoch: 029 | AvgCost: 0.488 | Train/Valid ACC: 0.874/0.767
Minibatch: 0200 | Cost: 0.313
Minibatch: 0400 | Cost: 0.508
Minibatch: 0600 | Cost: 0.553
Minibatch: 0800 | Cost: 0.385
Minibatch: 1000 | Cost: 0.272
Minibatch: 1200 | Cost: 0.366
Minibatch: 1400 | Cost: 0.156
Epoch: 030 | AvgCost: 0.404 | Train/Valid ACC: 0.909/0.776

In [5]:
##########################
### RELOAD & TEST
##########################

with tf.Session(graph=g) as sess:
    saver.restore(sess, save_path='./convnet-vgg16.ckpt')
    
    # test_acc = sess.run('accuracy:0', feed_dict={'features:0': X_test,
    #                                              'targets:0': y_test})
    # ---------------------------------------
    # workaround for GPUs with <= 4 Gb memory
    n_predictions, n_correct = 0, 0
    indices = np.arange(y_test.shape[0])
    chunksize = 500
    for start_idx in range(0, indices.shape[0] - chunksize + 1, chunksize):
        index_slice = indices[start_idx:start_idx + chunksize]
        p = sess.run('correct_predictions:0', 
                     feed_dict={'features:0': X_test[index_slice],
                                'targets:0': y_test[index_slice]})
        n_correct += np.sum(p)
        n_predictions += p.shape[0]
    test_acc = n_correct / n_predictions
    # ---------------------------------------

    print('Test ACC: %.3f' % test_acc)


INFO:tensorflow:Restoring parameters from ./convnet-vgg16.ckpt
Test ACC: 0.772