Problem 1 (7 pts)
In the finite space all norms are equivalent. This means that given any two norms $\|\cdot\|_*$ and $\|\cdot\|_{**}$ over $\mathbb{C}^{n\times 1}$, inequality $$ c_1 \Vert x \Vert_* \leq \Vert x \Vert_{**} \leq c_2 \Vert x \Vert_* $$ holds for every $x\in \mathbb{C}^{n\times 1}$ for some constants $c_1, c_2$ which in general depend on the vector size $n$: $c_1 \equiv c_1(n)$, $c_2 \equiv c_2(n)$. Norms equivalence means that for a certain process convergence in $\Vert \cdot \Vert_{**}$ is followed by $\Vert \cdot \Vert_{*}$ and vice versa. Note that practically convergence in a certain norm may be better than in another due to the strong dependence on $n$.
Consider \begin{equation} \begin{split} c_1(n) \Vert x \Vert_\infty &\leqslant \Vert x \Vert_1 \leqslant c_2(n) \Vert x \Vert_\infty \\ c_1(n) \Vert x \Vert_\infty &\leqslant \Vert x \Vert_2 \leqslant c_2(n)\Vert x \Vert_\infty \\ c_1(n) \Vert x \Vert_2\ &\leqslant \Vert x \Vert_1 \leqslant c_2(n) \Vert x \Vert_2 \end{split} \end{equation}
In [ ]:
Problem 2 (7 pts)
Given $A = [a_{ij}] \in\mathbb{C}^{n\times m}$
In [ ]:
Problem 3 (6 pts)
In [ ]:
Problem 4 (5 pts)
In [ ]:
Problem 5 (bonus tasks)
In [ ]: