In [1]:
from ndreg import *
import tempfile, os, fnmatch, shutil
%matplotlib inline

3D STP Registration

In this tutorial we show how to register Serial Two Photon Tomography images to the ARA.

Downloading ARA

First we'll download the Allen Reference Atlas (ARA) and associated annotations


In [2]:
refToken = "ara_ccf2"
refImg = imgDownload(refToken)
imgShow(refImg,vmax=500)



In [3]:
refAnnoImg = imgDownload(refToken, channel="annotation")
imgShow(refAnnoImg, vmax=1000)


Downloading STP Tomography image

Next we'll download the input STP Tomography image. The STP image has several channels.


In [4]:
inToken="eacker01"
nd = neurodata()
print(nd.get_channels(inToken).keys())


[u'r', u'b', u'annotation2', u'rgb', u'g']

The STP data was acquired in color and is stored in the rgb channel. The r, g and b store ther red, green and blue channels respectively. The input STP data also has 5 resolution levels available.


In [5]:
print(nd.get_metadata(inToken)['dataset']['voxelres'].keys())


[u'1', u'0', u'3', u'2', u'5', u'4']

Since the r channel contains the most information while level 5 is the lowest possible resolution we'll download it using these parameters


In [6]:
inImg = imgDownload(inToken,"r",5)

In [7]:
imgShow(inImg, vmax=10000)


Reorienting STP Tomography image

Clearly the downloaded input image is not oriented in the same way as the reference image. The input image is in lsp orientation while the reference image is in rsa orientation. Thue we need to reorient the input image.


In [8]:
inImg = imgReorient(inImg, "lsp", "rsa")
imgShow(inImg, vmax=10000)


Resampling images

At their current resolutions, registering these images would be way to computationally expensive for the purposes of this tutorial.


In [9]:
print(inImg.GetSize())
print(inImg.GetSpacing())


(574, 384, 150)
(0.032, 0.032, 0.09999999999999999)

In [10]:
print(refImg.GetSize())
print(refImg.GetSpacing())


(456, 320, 528)
(0.024999999999999998, 0.024999999999999998, 0.024999999999999998)

Thus we'll downsample them to 0.25 mm x 0.25 mm x 0.25 mm


In [11]:
spacing=[0.25,0.25,0.25]
refImg_ds = imgResample(refImg, spacing=spacing)
imgShow(refImg_ds, vmax=500)



In [12]:
inImg_ds = imgResample(inImg, spacing=spacing)
imgShow(inImg_ds, vmax=10000)


Affine Registraton

Now we'll run affine registration


In [13]:
affine = imgAffineComposite(inImg_ds, refImg_ds, iterations=200, useMI=True, verbose=False)

Next we'll apply the affine transform to the input image


In [14]:
inImg_affine = imgApplyAffine(inImg, affine, size=refImg.GetSize(), spacing=refImg.GetSpacing())
imgShow(inImg_affine, vmax=10000)


LDDMM Registration

Since we want a copies of the LDDMM log files we'll write the results to a temporary directory.


In [15]:
outDirPath = tempfile.mkdtemp() + "/"
print(outDirPath)


/tmp/tmpXHd5V2/

Now we'll run LDDMM registration while writing the log files to the temporary directory. This will take 5 to 15 minutes.


In [16]:
inImg_ds = imgResample(inImg_affine, spacing=spacing)
(field, invField) = imgMetamorphosisComposite(inImg_ds, refImg_ds,
                                              alphaList=[0.05, 0.02, 0.01],
                                              useMI=True,
                                              iterations=100,
                                              outDirPath=outDirPath,
                                              verbose=False)
inImg_lddmm = imgApplyField(inImg_affine, field, size=refImg.GetSize(), spacing=refImg.GetSpacing())

Displaying Results

We can easly display the registration results using the following function.


In [17]:
imgMetamorphosisSlicePlotter(inImg_affine, refImg, field)