imports
In [1]:
from csv import DictReader
# Transfer Learning using convolutional neural network (Inception) trained over Imagenet
import matplotlib.pylab as plt
%matplotlib inline
import numpy as np
from six.moves import urllib
import tensorflow as tf
import csv
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import re
import sys
import tarfile
Inception's functions
In [2]:
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'model_dir', '/tmp/imagenet',
"""Path to classify_image_graph_def.pb, """
"""imagenet_synset_to_human_label_map.txt, and """
"""imagenet_2012_challenge_label_map_proto.pbtxt.""")
tf.app.flags.DEFINE_string('image_file', '',
"""Absolute path to image file.""")
tf.app.flags.DEFINE_integer('num_top_predictions', 5,
"""Display this many predictions.""")
# pylint: disable=line-too-long
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
# pylint: enable=line-too-long
class NodeLookup(object):
"""Converts integer node ID's to human readable labels."""
def __init__(self,
label_lookup_path=None,
uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
"""Loads a human readable English name for each softmax node.
Args:
label_lookup_path: string UID to integer node ID.
uid_lookup_path: string UID to human-readable string.
Returns:
dict from integer node ID to human-readable string.
"""
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
# Loads mapping from string UID to human-readable string
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
p = re.compile(r'[n\d]*[ \S,]*')
for line in proto_as_ascii_lines:
parsed_items = p.findall(line)
uid = parsed_items[0]
human_string = parsed_items[2]
uid_to_human[uid] = human_string
# Loads mapping from string UID to integer node ID.
node_id_to_uid = {}
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
# Loads the final mapping of integer node ID to human-readable string
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
#print all op names
def print_ops():
create_graph()
with tf.Session() as sess:
ops = sess.graph.get_operations()
for op in ops:
print(op.name)
test with panda
In [3]:
with tf.Session() as sess:
create_graph()
image_data = tf.gfile.FastGFile('datasets/test/panda.jpg', 'rb').read()
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
# Classification
predictions = np.squeeze(predictions)
node_lookup = NodeLookup()
top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
for node_id in top_k:
human_string = node_lookup.id_to_string(node_id)
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
saving generated features in csv format
In [4]:
# function to generate features
def generateFeatures(layer_name ,dataset, name):
"""Generate and save features as csv for a particular layer and dataset.
Keyword arguments:
layer_name -- String: the name of the tensor, ex 'pool_3:0'
dataset -- Generator: an iterator over the image dataset
name -- String: the name of the dataset
"""
create_graph()
all_features = []
directory = os.path.join('features',name)
filepath = os.path.join(directory,layer_name+".csv")
with tf.Session() as sess:
layer = sess.graph.get_tensor_by_name(layer_name)
for image_data in dataset:
features = sess.run(layer,{'DecodeJpeg/contents:0': image_data})
features = np.reshape(features,(np.product(features.shape)))
all_features.append(features)
all_features= np.asarray(all_features)
# if one wants to see the result without saving
#labels = []
#with open("datasets/synthetic/trainLabels.csv",'rU') as f:
# rows = csv.DictReader(f)
# for row in rows:
# labels.append(row['Class'])
#labels = np.asarray(labels).astype(int)
#from sklearn.manifold import TSNE
#tsne_model = TSNE(n_components=2, random_state=0)
#np.set_printoptions(suppress=True)
#points = tsne_model.fit_transform(all_features)
#plt.scatter(points[:,0],points[:,1], c=labels)
if not os.path.exists(directory):
os.makedirs(directory)
np.savetxt(filepath, all_features, delimiter=",")
functions to create iterator for datasets
In [13]:
# function to create image set iterator
def dataset_gen(samplesPath, data_dir):
rows = DictReader(open(samplesPath,'rU'))
for row in rows:
filepath = data_dir+'/'+row['Id']+'.jpg'
if not os.path.exists(filepath):
tf.logging.fatal('File does not exist %s', filepath)
yield open(filepath, 'rb').read()
#print("Processing: "+ row['Id'])
all possible operations (layers) that one can put as layer_name
In [ ]:
print_ops()
synthetic dataset
In [15]:
layer_name = "pool_3:0"
image_itor = dataset_gen("datasets/synthetic/trainLabels.csv","datasets/synthetic")
generateFeatures(layer_name, image_itor, "synthetic")
images dataset
In [16]:
layer_name = "pool_3:0"
image_itor = dataset_gen("datasets/images/trainLabels.csv","datasets/images")
generateFeatures(layer_name, image_itor, "images")
emotion dataset
In [ ]:
layer_name = "pool_3:0"
image_itor = dataset_gen("datasets/emotion/samples.csv","datasets/emotion")
generateFeatures(layer_name, image_itor, "emotion")
In [ ]:
In [ ]:
In [ ]: