Demonstrates data science application development on IBM Engineering Workflow Manager (EWM, and formerly Rational Team Concert). mkdata.create_projectarea_df() uses the EWM SCM CLI for data access.
Mapping EWM and GitHub:
In [72]:
# Import required code
import sys;sys.path.append("..")
import importlib
import pandas as pd
from pandas import DataFrame
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
%matplotlib inline
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
from devml import (mkdata, stats, state, fetch_repo, ts)
# reload these incase they've changed during developmnet
importlib.reload(mkdata)
Out[72]:
In [62]:
# Execute this cell to set your user credentials
import getpass
userId = input("Input your EWM credentials...\nUser ID: ")
password = getpass.getpass()
In [73]:
# Load the developer data from an EWM project area.
# EWM ProjectArea -- GitHub Organization
# EWM component -- git repository
# EWM change set -- git commit
df = mkdata.create_projectarea_df('https://jazzop01.rtp.raleigh.ibm.com:9943/jazz', 'Jazz Collaborative ALM', userId, password)
In [74]:
df_author_ud = stats.author_unique_active_days(df)
In [75]:
df_author_ud.head(10)
Out[75]:
In [51]:
sns.barplot(y="author_name", x="active_days", data=df_author_ud.head(10))
Out[51]:
In [55]:
# Create a snapshot of this notebook
# Save the notebook before using nbconvert
from IPython.display import Javascript
script = '''
require(["base/js/namespace"],function(Jupyter) {
Jupyter.notebook.save_checkpoint();
});
'''
Javascript(script)
!jupyter nbconvert --no-prompt --no-input --ExtractOutputPreprocessor.enabled=False --TemplateExporter.exclude_input=True ewm_data_exploration.ipynb 2>/dev/null 1>/dev/null
In [ ]: