In [1]:
import numpy as np
For example:
$ \begin{bmatrix}1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 4 \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 6 \\ 11 \\ 20 \\ \end{bmatrix},\; A = \begin{bmatrix}1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 4 \\ \end{bmatrix},\; x = \begin{bmatrix}x_1 \\ x_2 \\ x_3 \\ \end{bmatrix},\; b = \begin{bmatrix} 6 \\ 11 \\ 20 \\ \end{bmatrix}$
$ [A, b] = \begin{bmatrix}1 & 1 & 1 & 6\\ 3 & 1 & 2 & 11\\ 2 & 3 & 4 & 20\\ \end{bmatrix}$
row2 - row1 * 3: $ \begin{bmatrix}1 & 1 & 1 & 6\\ 0 & -2 & -1 & -7\\ 2 & 3 & 4 & 20\\ \end{bmatrix} $
row3 - row1 * 2: $ \begin{bmatrix}1 & 1 & 1 & 6\\ 0 & -2 & -1 & -7\\ 0 & 1 & 2 & 8\\ \end{bmatrix} $
exchange row2 with row3: $ \begin{bmatrix}1 & 1 & 1 & 6\\ 0 & 1 & 2 & 8\\ 0 & -2 & -1 & -7\\ \end{bmatrix} $
row1 - row2: $ \begin{bmatrix}1 & 0 & -1 & -2\\ 0 & 1 & 2 & 8\\ 0 & -2 & -1 & -7\\ \end{bmatrix} $
row3 + row2 * 2: $ \begin{bmatrix}1 & 0 & -1 & -2\\ 0 & 1 & 2 & 8\\ 0 & 0 & 3 & 9\\ \end{bmatrix} $
divide row3 by 3: $ \begin{bmatrix}1 & 0 & -1 & -2\\ 0 & 1 & 2 & 8\\ 0 & 0 & 1 & 3\\ \end{bmatrix} $
row1 + row3: $ \begin{bmatrix}1 & 0 & 0 & 1\\ 0 & 1 & 2 & 8\\ 0 & 0 & 1 & 3\\ \end{bmatrix} $
row2 - row3 * 2: $ \begin{bmatrix}1 & 0 & 0 & 1\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & 3\\ \end{bmatrix} $
$ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ \end{bmatrix}$
In [7]:
A = np.array([[1,1,1], [3,1,2], [2,3,4]])
b = np.array([6, 11, 20])
In [8]:
A
Out[8]:
In [9]:
b
Out[9]:
In [10]:
x = np.linalg.solve(A, b)
In [11]:
x
Out[11]:
For example:
$ A = \begin{bmatrix}1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 4 \\ \end{bmatrix} $
$ [A, I] = \begin{bmatrix}1 & 1 & 1 & 1 & 0 & 0\\ 3 & 1 & 2 & 0 & 1 & 0\\ 2 & 3 & 4 & 0 & 0 & 1\\ \end{bmatrix}$
row2 - row1 * 3: $ \begin{bmatrix}1 & 1 & 1 & 1 & 0 & 0\\ 0 & -2 & -1 & -3 & 1 & 0\\ 2 & 3 & 4 & 0 & 0 & 1\\ \end{bmatrix} $
row3 - row1 * 2: $ \begin{bmatrix}1 & 1 & 1 & 1 & 0 & 0\\ 0 & -2 & -1 & -3 & 1 & 0\\ 0 & 1 & 2 & -2 & 0 & 1\\ \end{bmatrix} $
exchange row2 with row3: $ \begin{bmatrix}1 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 2 & -2 & 0 & 1\\ 0 & -2 & -1 & -3 & 1 & 0\\ \end{bmatrix} $
row1 - row2: $ \begin{bmatrix}1 & 0 & -1 & 3 & 0 & -1\\ 0 & 1 & 2 & -2 & 0 & 1\\ 0 & -2 & -1 & -3 & 1 & 0\\ \end{bmatrix} $
row3 + row2 * 2: $ \begin{bmatrix}1 & 0 & -1 & 3 & 0 & -1\\ 0 & 1 & 2 & -2 & 0 & 1\\ 0 & 0 & 3 & -7 & 1 & 2\\ \end{bmatrix} $
divide row3 by 3: $ \begin{bmatrix}1 & 0 & -1 & 3 & 0 & -1\\ 0 & 1 & 2 & -2 & 0 & 1\\ 0 & 0 & 1 & -\frac{7}{3} & \frac{1}{3} & \frac{2}{3} \\ \end{bmatrix} $
row1 + row3: $ \begin{bmatrix}1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3}\\ 0 & 1 & 2 & -2 & 0 & 1\\ 0 & 0 & 1 & -\frac{7}{3} & \frac{1}{3} & \frac{2}{3}\\ \end{bmatrix} $
row2 - row3 * 2: $ \begin{bmatrix}1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} & -\frac{1}{3}\\ 0 & 1 & 0 & \frac{8}{3} & -\frac{2}{3} & -\frac{1}{3}\\ 0 & 0 & 1 & -\frac{7}{3} & \frac{1}{3} & \frac{2}{3}\\ \end{bmatrix} $
In [17]:
A = np.matrix([[1,1,1], [3,1,2], [2,3,4]])
In [18]:
A
Out[18]:
In [19]:
np.linalg.inv(A)
Out[19]:
All linear combinations of columns
$ Ax = b $ is solvable if and only if b is in the column space of A
It is the number of pivots
It can tell the number of independent columns
It is the dimension of column space, row space and nullspace
For example:
$ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 1 \\ 3 & 6 & 4 \\ \end{bmatrix}$
row2 - row1 * 2 : $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & -3 \\ 3 & 6 & 4 \\ \end{bmatrix}$
row3 - row1 * 3 : $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & -3 \\ 0 & 0 & -2 \\ \end{bmatrix}$
row3 - row2 * 3/2 : $ \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \\ \end{bmatrix} $
So, $ rank(A) = 2 $
In [4]:
A = np.matrix([[1,2,2],[2,4,1],[3,6,4]])
In [5]:
A
Out[5]:
In [6]:
np.linalg.matrix_rank(A)
Out[6]:
$ P = A(A^TA)^{-1}A^T$
For example:
$ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{bmatrix} ,\; A^T = \begin{bmatrix}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \\ \end{bmatrix}$
In [25]:
A = np.matrix([[1,2,3], [4,5,6], [7,8,9]])
In [26]:
A
Out[26]:
In [27]:
A.transpose()
Out[27]:
In [28]:
A.T
Out[28]:
$$ If \; Av = \lambda v ,\; then \; \lambda \;is\; the\; eigenvalue\; of\; matrix\; A,\; and \;v \;is \;a \;eigenvector.\;$$