In [ ]:
%matplotlib inline
import pandas as pd
import numpy as np
try:
import xarray as xray
except:
import xray
import matplotlib.pyplot as plt
In [2]:
import sys
In [3]:
sys.path.insert(0, '../')
In [4]:
from paleopy import proxy
from paleopy import analogs
from paleopy.plotting import scalar_plot
In [5]:
djsons = '../jsons/'
pjsons = '../jsons/proxies'
In [6]:
p = proxy(sitename='Rarotonga', \
lon = -159.82, \
lat = -21.23, \
djsons = djsons, \
pjsons = pjsons, \
pfname = 'Rarotonga.json', \
dataset = 'ersst', \
variable ='sst', \
measurement ='delta O18', \
dating_convention = 'absolute', \
calendar = 'gregorian',\
chronology = 'historic', \
season = 'DJF', \
value = 0.6, \
qualitative = 0, \
calc_anoms = 1, \
detrend = 1, \
method = 'quintiles')
In [8]:
p.find_analogs()
In [10]:
p.proxy_repr(pprint=True)
In [11]:
p.analog_years
Out[11]:
In [12]:
p.analogs
Out[12]:
In [14]:
p.proxy_repr(pprint=False, outfile=True)
In [15]:
!ls -lt ../jsons/proxies/Rarotonga.json
In [16]:
f = p.plot_season_ts()
In [26]:
compos = analogs(p, 'ncep', 'hgt_1000').composite()
In [27]:
f = scalar_plot(compos, test=0.1).plot(subplots=False)
In [28]:
f = scalar_plot(compos, test=0.1, proj='cyl', domain=[165, 180, -50., -30], res='h').plot(subplots=False)
In [29]:
f = scalar_plot(compos, test=0.1, proj='cyl', domain=[165, 180, -50., -30], res='h').plot(subplots=True)
In [30]:
compos = analogs(p, 'vcsn', 'TMean').composite()
In [31]:
f = scalar_plot(compos, test=0.1, proj='cyl', res='h', vmin=-0.5, vmax=0.5).plot(subplots=False)
In [32]:
compos.dset
Out[32]:
In [40]:
compos.save_to_file('/Users/nicolasf/Desktop/vcsn_tmean.nc')
In [41]:
!ncdump -h /Users/nicolasf/Desktop/vcsn_tmean.nc
In [42]:
compos = analogs(p, 'ersst', 'sst').composite()
In [43]:
f = scalar_plot(compos, test=0.1).plot(subplots=False)
In [44]:
f = scalar_plot(compos, test=0.1, proj='spstere').plot(subplots=False)
In [38]:
compos.dset
Out[38]:
In [39]:
compos.save_to_file('/Users/nicolasf/Desktop/ersst_sst.nc')
In [45]:
!ncdump -h /Users/nicolasf/Desktop/ersst_sst.nc
In [ ]: