In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
In [2]:
import sys
In [3]:
sys.path.append('../')
In [4]:
from paleopy import proxy
from paleopy import analogs
from paleopy.plotting import indices
In [5]:
djsons = '../jsons/'
pjsons = '../jsons/proxies'
In [7]:
p = proxy(sitename='Rarotonga', \
lon = -159.82, \
lat = -21.23, \
djsons = djsons, \
pjsons = pjsons, \
pfname = 'Rarotonga.json', \
dataset = 'ersst', \
variable ='sst', \
measurement ='delta O18', \
dating_convention = 'absolute', \
calendar = 'gregorian',\
chronology = 'historic', \
season = 'DJF', \
value = 0.6, \
calc_anoms = 1, \
detrend = 1)
In [8]:
p.find_analogs()
In [9]:
p.analog_years
Out[9]:
In [10]:
p.analogs
Out[10]:
In [11]:
f = p.plot_season_ts()
In [12]:
p.proxy_repr(pprint=True)
In [13]:
indice = indices(p)
In [14]:
indice.composite()
In [15]:
indice.compos.std()
Out[15]:
In [16]:
f = indices(p).plot()
In [18]:
from paleopy import ensemble
In [19]:
djsons = '../jsons/'
pjsons = '../jsons/proxies'
In [20]:
ens = ensemble(djsons=djsons, pjsons=pjsons, season='DJF')
In [21]:
f = indices(ens).plot()
In [29]:
obj = indices(p)
In [30]:
obj.composite()
In [31]:
obj.compos
Out[31]:
In [ ]: