Goal

  • Simulating fullCyc Day1 control gradients
    • Not simulating incorporation (all 0% isotope incorp.)
      • Don't know how much true incorporatation for emperical data
  • Using parameters inferred from emperical data (fullCyc Day1 seq data), or if not available, default SIPSim parameters
  • Determining whether simulated taxa show similar distribution to the emperical data
  • Simulating higher levels of richness

Init


In [1]:
import os
import glob
import re
import nestly
%load_ext rpy2.ipython
%load_ext pushnote

In [2]:
%%R
library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
library(phyloseq)

## BD for G+C of 0 or 100
BD.GCp0 = 0 * 0.098 + 1.66
BD.GCp100 = 1 * 0.098 + 1.66


/opt/anaconda/lib/python2.7/site-packages/rpy2/robjects/functions.py:106: UserWarning: 
Attaching package: ‘dplyr’


  res = super(Function, self).__call__(*new_args, **new_kwargs)
/opt/anaconda/lib/python2.7/site-packages/rpy2/robjects/functions.py:106: UserWarning: The following objects are masked from ‘package:stats’:

    filter, lag


  res = super(Function, self).__call__(*new_args, **new_kwargs)
/opt/anaconda/lib/python2.7/site-packages/rpy2/robjects/functions.py:106: UserWarning: The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union


  res = super(Function, self).__call__(*new_args, **new_kwargs)

Nestly

  • assuming fragments already simulated

In [9]:
workDir = '/home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/'
buildDir = os.path.join(workDir, 'Day1_xRich')
R_dir = '/home/nick/notebook/SIPSim/lib/R/'

fragFile= '/home/nick/notebook/SIPSim/dev/bac_genome1147/validation/ampFrags.pkl'
targetFile = '/home/nick/notebook/SIPSim/dev/fullCyc/CD-HIT/target_taxa.txt'

physeqDir = '/var/seq_data/fullCyc/MiSeq_16SrRNA/515f-806r/lib1-7/phyloseq/'
physeq_bulkCore = 'bulk-core'
physeq_SIP_core = 'SIP-core_unk'


prefrac_comm_abundance = ['1e9']
richness = [2503, 4000, 8000, 120000]   # 2503=  chao1 estimate for bulk Day 1

seq_per_fraction = ['lognormal', 9.432, 0.5, 10000, 30000] # dist, mean, scale, min, max
bulk_days = [1]
nprocs = 24

In [10]:
# building tree structure
nest = nestly.Nest()

## varying params
nest.add('richness', richness)

## set params
nest.add('abs', prefrac_comm_abundance, create_dir=False)
nest.add('bulk_day', bulk_days, create_dir=False)
nest.add('percIncorp', [0], create_dir=False)
nest.add('percTaxa', [0], create_dir=False)
nest.add('np', [nprocs], create_dir=False)
nest.add('subsample_dist', [seq_per_fraction[0]], create_dir=False)
nest.add('subsample_mean', [seq_per_fraction[1]], create_dir=False)
nest.add('subsample_scale', [seq_per_fraction[2]], create_dir=False)
nest.add('subsample_min', [seq_per_fraction[3]], create_dir=False)
nest.add('subsample_max', [seq_per_fraction[4]], create_dir=False)

### input/output files
nest.add('buildDir', [buildDir], create_dir=False)
nest.add('R_dir', [R_dir], create_dir=False)
nest.add('fragFile', [fragFile], create_dir=False)
nest.add('targetFile', [targetFile], create_dir=False)
nest.add('physeqDir', [physeqDir], create_dir=False)
nest.add('physeq_bulkCore', [physeq_bulkCore], create_dir=False)


# building directory tree
nest.build(buildDir)

# bash file to run
bashFile = os.path.join(buildDir, 'SIPSimRun.sh')

In [11]:
%%writefile $bashFile
#!/bin/bash

export PATH={R_dir}:$PATH

#-- making DNA pool similar to gradient of interest
echo '# Creating comm file from phyloseq'
phyloseq2comm.r {physeqDir}{physeq_bulkCore} -s 12C-Con -d {bulk_day} > {physeq_bulkCore}_comm.txt
printf 'Number of lines: '; wc -l {physeq_bulkCore}_comm.txt

echo '## Adding target taxa to comm file'
comm_add_target.r {physeq_bulkCore}_comm.txt {targetFile} > {physeq_bulkCore}_comm_target.txt
printf 'Number of lines: '; wc -l {physeq_bulkCore}_comm_target.txt

echo '# Adding extra richness to community file'
printf "1\t{richness}\n" > richness_needed.txt
comm_add_richness.r -s {physeq_bulkCore}_comm_target.txt richness_needed.txt > {physeq_bulkCore}_comm_all.txt
### renaming comm file for downstream pipeline
cat {physeq_bulkCore}_comm_all.txt > {physeq_bulkCore}_comm_target.txt
rm -f {physeq_bulkCore}_comm_all.txt 

echo '## parsing out genome fragments to make simulated DNA pool resembling the gradient of interest'
## all OTUs without an associated reference genome will be assigned a random reference (of the reference genome pool)
### this is done through --NA-random
SIPSim fragment_KDE_parse {fragFile} {physeq_bulkCore}_comm_target.txt \
    --rename taxon_name --NA-random > fragsParsed.pkl


echo '#-- SIPSim pipeline --#'
echo '# converting fragments to KDE'
SIPSim fragment_KDE \
    fragsParsed.pkl \
    > fragsParsed_KDE.pkl
    
echo '# adding diffusion'    
SIPSim diffusion \
    fragsParsed_KDE.pkl \
    --np {np} \
    > fragsParsed_KDE_dif.pkl    

echo '# adding DBL contamination'
SIPSim DBL \
    fragsParsed_KDE_dif.pkl \
    --np {np} \
    > fragsParsed_KDE_dif_DBL.pkl      
    
echo '# making incorp file'
SIPSim incorpConfigExample \
  --percTaxa {percTaxa} \
  --percIncorpUnif {percIncorp} \
  > {percTaxa}_{percIncorp}.config

echo '# adding isotope incorporation to BD distribution'
SIPSim isotope_incorp \
    fragsParsed_KDE_dif_DBL.pkl \
    {percTaxa}_{percIncorp}.config \
    --comm {physeq_bulkCore}_comm_target.txt \
    --np {np} \
    > fragsParsed_KDE_dif_DBL_inc.pkl
    
#echo '# calculating BD shift from isotope incorporation'
#SIPSim BD_shift \
#    fragsParsed_KDE_dif_DBL.pkl \
#    fragsParsed_KDE_dif_DBL_inc.pkl \
#    --np {np} \
#    > fragsParsed_KDE_dif_DBL_inc_BD-shift.txt

echo '# simulating gradient fractions'
SIPSim gradient_fractions \
    {physeq_bulkCore}_comm_target.txt \
    > fracs.txt 

echo '# simulating an OTU table'
SIPSim OTU_table \
    fragsParsed_KDE_dif_DBL_inc.pkl \
    {physeq_bulkCore}_comm_target.txt \
    fracs.txt \
    --abs {abs} \
    --np {np} \
    > OTU_abs{abs}.txt
    
#echo '# simulating PCR'
SIPSim OTU_PCR \
    OTU_abs{abs}.txt \
    > OTU_abs{abs}_PCR.txt    
    
echo '# subsampling from the OTU table (simulating sequencing of the DNA pool)'
SIPSim OTU_subsample \
    --dist {subsample_dist} \
    --dist_params mean:{subsample_mean},sigma:{subsample_scale} \
    --min_size {subsample_min} \
    --max_size {subsample_max} \
    OTU_abs{abs}_PCR.txt \
    > OTU_abs{abs}_PCR_sub.txt
        
echo '# making a wide-formatted table'
SIPSim OTU_wideLong -w \
    OTU_abs{abs}_PCR_sub.txt \
    > OTU_abs{abs}_PCR_sub_w.txt
    
echo '# making metadata (phyloseq: sample_data)'
SIPSim OTU_sampleData \
    OTU_abs{abs}_PCR_sub.txt \
    > OTU_abs{abs}_PCR_sub_meta.txt


Writing /home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/Day1_xRich/SIPSimRun.sh

In [ ]:
!chmod 777 $bashFile
!cd $workDir; \
    nestrun  --template-file $bashFile -d Day1_xRich --log-file log.txt -j 1


2016-01-23 18:38:52,463 * INFO * Template: ./SIPSimRun.sh
2016-01-23 18:38:52,465 * INFO * [187576] Started ./SIPSimRun.sh in Day1_xRich/4000
2016-01-23 19:35:50,089 * INFO * [187576] Day1_xRich/4000 Finished with 0
2016-01-23 19:35:50,106 * INFO * [190193] Started ./SIPSimRun.sh in Day1_xRich/120000

Notes

  • richness of 8000 & 12000 failed due to memory errors

BD min/max

  • what is the min/max BD that we care about?

In [18]:
%%R
## min G+C cutoff
min_GC = 13.5
## max G+C cutoff
max_GC = 80
## max G+C shift
max_13C_shift_in_BD = 0.036


min_BD = min_GC/100.0 * 0.098 + 1.66    
max_BD = max_GC/100.0 * 0.098 + 1.66    

max_BD = max_BD + max_13C_shift_in_BD

cat('Min BD:', min_BD, '\n')
cat('Max BD:', max_BD, '\n')


Min BD: 1.67323 
Max BD: 1.7744 

Loading simulated OTU tables


In [39]:
%%R -i OTU_files -i buildDir
# loading files

OTU_files = c('/home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/Day1_xRich/2503/OTU_abs1e9_PCR_sub.txt',
              '/home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/Day1_xRich/4000/OTU_abs1e9_PCR_sub.txt')

df.SIM = list()
for (x in OTU_files){
    richness = gsub(paste0(buildDir, '/'), '', x)
    richness = gsub('/OTU_abs1e9_PCR_sub.txt', '', richness)
    df.SIM[[richness]] = read.delim(x, sep='\t') 
    }
df.SIM = do.call('rbind', df.SIM)
df.SIM$richness = gsub('\\.[0-9]+$', '', rownames(df.SIM))
rownames(df.SIM) = 1:nrow(df.SIM)
df.SIM %>% head


  library    fraction taxon BD_min BD_mid BD_max count   rel_abund richness
1       1  -inf-1.660 OTU.1   -Inf  1.659  1.659   159 0.014128310     2503
2       1 1.660-1.667 OTU.1  1.660  1.663  1.667   345 0.018148343     2503
3       1 1.667-1.670 OTU.1  1.667  1.668  1.670   231 0.009254437     2503
4       1 1.670-1.673 OTU.1  1.670  1.671  1.673   373 0.016228681     2503
5       1 1.673-1.676 OTU.1  1.673  1.675  1.676   142 0.013558675     2503
6       1 1.676-1.680 OTU.1  1.676  1.678  1.680   225 0.011249438     2503

In [40]:
%%R
## edit table
df.SIM.nt = df.SIM %>%
    filter(count > 0) %>%
    group_by(richness, library, BD_mid) %>%
    summarize(n_taxa = n()) %>%
    filter(BD_mid >= min_BD, 
           BD_mid <= max_BD)
df.SIM.nt %>% head


Source: local data frame [6 x 4]
Groups: richness, library [1]

  richness library BD_mid n_taxa
     (chr)   (int)  (dbl)  (int)
1     2503       1  1.675   1721
2     2503       1  1.678   2084
3     2503       1  1.682   1859
4     2503       1  1.686   1266
5     2503       1  1.689    675
6     2503       1  1.692    589

Plotting number of taxa in each fraction

Emperical data (fullCyc)


In [41]:
%%R 
# simulated OTU table file
OTU.table.dir = '/home/nick/notebook/SIPSim/dev/fullCyc/frag_norm_9_2.5_n5/Day1_default_run/1e9/'
OTU.table.file = 'OTU_abs1e9_PCR_sub.txt'
#OTU.table.file = 'OTU_abs1e9_sub.txt'
#OTU.table.file = 'OTU_abs1e9.txt'

In [42]:
%%R -i physeqDir -i physeq_SIP_core -i bulk_days

# bulk core samples
F = file.path(physeqDir, physeq_SIP_core)
physeq.SIP.core = readRDS(F) 
physeq.SIP.core.m = physeq.SIP.core %>% sample_data

physeq.SIP.core = prune_samples(physeq.SIP.core.m$Substrate == '12C-Con' & 
                                physeq.SIP.core.m$Day %in% bulk_days, 
                                physeq.SIP.core) %>%
    filter_taxa(function(x) sum(x) > 0, TRUE)
physeq.SIP.core.m = physeq.SIP.core %>% sample_data        

physeq.SIP.core


phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 7025 taxa and 25 samples ]
sample_data() Sample Data:       [ 25 samples by 17 sample variables ]
tax_table()   Taxonomy Table:    [ 7025 taxa by 8 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 7025 tips and 7024 internal nodes ]

In [43]:
%%R -w 800 -h 300 

## dataframe
df.EMP = physeq.SIP.core %>% otu_table %>%
    as.matrix %>% as.data.frame
df.EMP$OTU = rownames(df.EMP)
df.EMP = df.EMP %>%    
    gather(sample, abundance, 1:(ncol(df.EMP)-1)) 

df.EMP = inner_join(df.EMP, physeq.SIP.core.m, c('sample' = 'X.Sample')) 

df.EMP.nt = df.EMP %>%
    group_by(sample) %>%
    mutate(n_taxa = sum(abundance > 0)) %>%
    ungroup() %>%
    distinct(sample) %>%
    filter(Buoyant_density >= min_BD, 
           Buoyant_density <= max_BD) 
    

## plotting
p = ggplot(df.EMP.nt, aes(Buoyant_density, n_taxa)) +
    geom_point(color='blue') +
    geom_line(color='blue') +
    #geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
    labs(x='Buoyant density', y='Number of taxa') +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        legend.position = 'none'
    )
p


w/ simulated data


In [44]:
%%R -w 800 -h 300
# plotting
p = ggplot(df.SIM.nt, aes(BD_mid, n_taxa)) +
    geom_point(aes(color=richness, group=richness)) +
    geom_line(aes(color=richness, group=richness), alpha=0.5) +
    #geom_smooth(color='red') +
    geom_point(data=df.EMP.nt, aes(x=Buoyant_density), color='blue') +
    geom_line(data=df.EMP.nt, aes(x=Buoyant_density), color='blue') +
    #geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
    labs(x='Buoyant density', y='Number of taxa') +
    theme_bw() +
    theme( 
        text = element_text(size=16)#,
    #    legend.position = 'none'
    )
p


Total sequence count


In [47]:
%%R -w 800 -h 300

# simulated
df.SIM.s = df.SIM %>%
    group_by(richness, library, BD_mid) %>%
    summarize(total_abund = sum(count)) %>%
    rename('Day' = library, 'Buoyant_density' = BD_mid) %>%
    ungroup() %>%
    mutate(dataset='simulated')
# emperical
df.EMP.s = df.EMP %>% 
    group_by(Day, Buoyant_density) %>%
    summarize(total_abund = sum(abundance))  %>%
    ungroup() %>%
    mutate(dataset='emperical', richness = NA)

# join
df.j = rbind(df.SIM.s, df.EMP.s) %>%
    filter(Buoyant_density >= min_BD, 
           Buoyant_density <= max_BD)
    
df.SIM.s = df.EMP.s = ""

# plot
ggplot(df.j, aes(Buoyant_density, total_abund, color=dataset, group=richness)) +
    geom_point() +
    geom_line(alpha=0.3) +
    geom_line(data=df.j %>% filter(dataset=='emperical')) +
    scale_color_manual(values=c('blue', 'red')) +
    labs(x='Buoyant density', y='Total sequences per sample') +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        legend.position = 'none'
    )


Plotting Shannon diversity for each


In [49]:
%%R
shannon_index_long = function(df, abundance_col, ...){
    # calculating shannon diversity index from a 'long' formated table
    ## community_col = name of column defining communities
    ## abundance_col = name of column defining taxon abundances
    df = df %>% as.data.frame
    cmd = paste0(abundance_col, '/sum(', abundance_col, ')')
    df.s = df %>%
        group_by_(...) %>%
        mutate_(REL_abundance = cmd) %>%
        mutate(pi__ln_pi = REL_abundance * log(REL_abundance),
               shannon = -sum(pi__ln_pi, na.rm=TRUE)) %>%
        ungroup() %>% 
        dplyr::select(-REL_abundance, -pi__ln_pi) %>%
        distinct_(...) 
    return(df.s)
}

In [50]:
%%R
# calculating shannon
df.SIM.shan = shannon_index_long(df.SIM, 'count', 'richness', 'library', 'fraction') %>%
    filter(BD_mid >= min_BD, 
           BD_mid <= max_BD)
    
df.EMP.shan = shannon_index_long(df.EMP, 'abundance', 'sample') %>%
    filter(Buoyant_density >= min_BD, 
           Buoyant_density <= max_BD)

In [53]:
%%R -w 800 -h 300
# plotting
p = ggplot(df.SIM.shan, aes(BD_mid, shannon, group=richness)) +
    geom_point(aes(color=richness)) +
    geom_line(aes(color=richness), alpha=0.3) +
    geom_point(data=df.EMP.shan, aes(x=Buoyant_density), color='blue') +
    geom_line(data=df.EMP.shan, aes(x=Buoyant_density), color='blue') +
    scale_y_continuous(limits=c(4, 7.5)) +
    labs(x='Buoyant density', y='Shannon index') +
    theme_bw() +
    theme( 
        text = element_text(size=16)#,
        #legend.position = 'none'
    )
p


min/max abundances of taxa


In [62]:
%%R -h 300 -w 800

# simulated
df.SIM.s = df.SIM %>% 
    filter(rel_abund > 0) %>%
    group_by(richness, BD_mid) %>%
    summarize(min_abund = min(rel_abund),
              max_abund = max(rel_abund)) %>%
    ungroup() %>%
    rename('Buoyant_density' = BD_mid) %>%
    mutate(dataset = 'simulated')

# emperical
df.EMP.s = df.EMP %>%
    group_by(Buoyant_density) %>%
    mutate(rel_abund = abundance / sum(abundance)) %>%
    filter(rel_abund > 0) %>%
    summarize(min_abund = min(rel_abund),
              max_abund = max(rel_abund)) %>%
    ungroup() %>%
    mutate(dataset = 'emperical',
           richness = NA)

df.j = rbind(df.SIM.s, df.EMP.s) %>%
    filter(Buoyant_density >= min_BD, 
           Buoyant_density <= max_BD)
    

# plotting
ggplot(df.j, aes(Buoyant_density, max_abund, color=dataset, group=richness)) +
    geom_point(aes(color=richness)) +
    geom_line(aes(color=richness), alpha=0.3) +
    geom_line(data=df.j %>% filter(dataset=='emperical')) +
    scale_color_manual(values=c('green', 'red', 'blue')) +
    labs(x='Buoyant density', y='Maximum relative abundance') +
    theme_bw() +
    theme( 
        text = element_text(size=16),
        legend.position = 'none'
    )


BD range where an OTU is detected

  • Do the simulated OTU BD distributions span the same BD range of the emperical data?

Simulated


In [63]:
%%R
comm_files = c('/home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/Day1_xRich/2503/bulk-core_comm_target.txt',
              '/home/nick/notebook/SIPSim/dev/fullCyc/n1147_frag_norm_9_2.5_n5/Day1_xRich/4000/bulk-core_comm_target.txt')

In [67]:
%%R 

df.comm = list()
for (f in comm_files){
    rep = gsub('.+/Day1_xRich/([0-9]+)/.+', '\\1', f)
    df.comm[[rep]] = read.delim(f, sep='\t') %>%
        dplyr::select(library, taxon_name, rel_abund_perc) %>%
        rename('bulk_abund' = rel_abund_perc) %>%
        mutate(bulk_abund = bulk_abund / 100)
}

df.comm = do.call('rbind', df.comm)
df.comm$richness = gsub('\\.[0-9]+$', '', rownames(df.comm))
rownames(df.comm) = 1:nrow(df.comm)
df.comm %>% head(n=3)


  library taxon_name bulk_abund richness
1       1  OTU.14142 0.05918292     2503
2       1      OTU.2 0.05856579     2503
3       1  OTU.12920 0.04424833     2503

In [69]:
%%R

## joining
df.SIM.j = inner_join(df.SIM, df.comm, c('richness' = 'richness',
                                         'library' = 'library',
                                         'taxon' = 'taxon_name')) %>%
    filter(BD_mid >= min_BD, 
           BD_mid <= max_BD)
    
df.SIM.j %>% head(n=3)


  library    fraction taxon BD_min BD_mid BD_max count  rel_abund richness
1       1 1.673-1.676 OTU.1  1.673  1.675  1.676   142 0.01355867     2503
2       1 1.676-1.680 OTU.1  1.676  1.678  1.680   225 0.01124944     2503
3       1 1.680-1.684 OTU.1  1.680  1.682  1.684   169 0.01142896     2503
  bulk_abund
1 0.02801777
2 0.02801777
3 0.02801777

Emperical


In [70]:
%%R
bulk_days = c(1)

In [71]:
%%R
physeq.dir = '/var/seq_data/fullCyc/MiSeq_16SrRNA/515f-806r/lib1-7/phyloseq/'
physeq.bulk = 'bulk-core'
physeq.file = file.path(physeq.dir, physeq.bulk)
physeq.bulk = readRDS(physeq.file)
physeq.bulk.m = physeq.bulk %>% sample_data
physeq.bulk = prune_samples(physeq.bulk.m$Exp_type == 'microcosm_bulk' &
                            physeq.bulk.m$Day %in% bulk_days, physeq.bulk)

physeq.bulk.m = physeq.bulk %>% sample_data
physeq.bulk


phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 4950 taxa and 1 samples ]
sample_data() Sample Data:       [ 1 samples by 17 sample variables ]
tax_table()   Taxonomy Table:    [ 4950 taxa by 8 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 4950 tips and 4949 internal nodes ]

In [72]:
%%R
physeq.bulk.n = transform_sample_counts(physeq.bulk, function(x) x/sum(x))
physeq.bulk.n


phyloseq-class experiment-level object
otu_table()   OTU Table:         [ 4950 taxa and 1 samples ]
sample_data() Sample Data:       [ 1 samples by 17 sample variables ]
tax_table()   Taxonomy Table:    [ 4950 taxa by 8 taxonomic ranks ]
phy_tree()    Phylogenetic Tree: [ 4950 tips and 4949 internal nodes ]

In [73]:
%%R
# making long format of each bulk table
bulk.otu = physeq.bulk.n %>% otu_table %>% as.data.frame
ncol = ncol(bulk.otu)
bulk.otu$OTU = rownames(bulk.otu)
bulk.otu = bulk.otu %>%
    gather(sample, abundance, 1:ncol) 

bulk.otu = inner_join(physeq.bulk.m, bulk.otu, c('X.Sample' = 'sample')) %>%
    dplyr::select(OTU, abundance) %>%
    rename('bulk_abund' = abundance)
bulk.otu %>% head(n=3)


       OTU   bulk_abund
1 OTU.1101 1.234263e-04
2 OTU.1130 6.171316e-05
3 OTU.9833 0.000000e+00

In [74]:
%%R
# joining tables
df.EMP.j = inner_join(df.EMP, bulk.otu, c('OTU' = 'OTU')) %>%
    filter(Buoyant_density >= min_BD, 
           Buoyant_density <= max_BD)
    
df.EMP.j %>% head(n=3)


       OTU            sample abundance primer_number fwd_barcode rev_barcode
1 OTU.1101 12C-Con.D1.R2_F23         2           134    TCGACGAG    TGAGTACG
2 OTU.1130 12C-Con.D1.R2_F23         0           134    TCGACGAG    TGAGTACG
3 OTU.9833 12C-Con.D1.R2_F23         0           134    TCGACGAG    TGAGTACG
  Substrate Day Microcosm_replicate Fraction Buoyant_density Sample_type
1   12C-Con   1                   2       23         1.69362     unknown
2   12C-Con   1                   2       23         1.69362     unknown
3   12C-Con   1                   2       23         1.69362     unknown
         library Exp_type Sample_location Sample_date Sample_treatment
1 150721_V4_Lib4      SIP              NA          NA               NA
2 150721_V4_Lib4      SIP              NA          NA               NA
3 150721_V4_Lib4      SIP              NA          NA               NA
  Sample_subtreatment core_dataset   bulk_abund
1                  NA         TRUE 1.234263e-04
2                  NA         TRUE 6.171316e-05
3                  NA         TRUE 0.000000e+00

In [75]:
%%R 
# filtering & combining emperical w/ simulated data

## emperical 
max_BD_range = max(df.EMP.j$Buoyant_density) - min(df.EMP.j$Buoyant_density)
df.EMP.j.f = df.EMP.j %>%
    filter(abundance > 0) %>%
    group_by(OTU) %>%
    summarize(mean_rel_abund = mean(bulk_abund),
              min_BD = min(Buoyant_density),
              max_BD = max(Buoyant_density),
              BD_range = max_BD - min_BD,
              BD_range_perc = BD_range / max_BD_range * 100) %>%
    ungroup() %>%
    mutate(dataset = 'emperical',
           richness = NA)

## simulated
max_BD_range = max(df.SIM.j$BD_mid) - min(df.SIM.j$BD_mid)
df.SIM.j.f = df.SIM.j %>%
    filter(count > 0) %>%
    group_by(richness, taxon) %>%
    summarize(mean_rel_abund = mean(bulk_abund),
              min_BD = min(BD_mid),
              max_BD = max(BD_mid),
              BD_range = max_BD - min_BD,
              BD_range_perc = BD_range / max_BD_range * 100) %>%
    ungroup() %>%
    rename('OTU' = taxon) %>%
    mutate(dataset = 'simulated')

## join
df.j = rbind(df.EMP.j.f, df.SIM.j.f) %>%
    filter(BD_range_perc > 0,
            mean_rel_abund > 0)

df.j %>% head(n=3)


Source: local data frame [3 x 8]

      OTU mean_rel_abund   min_BD   max_BD   BD_range BD_range_perc   dataset
    (chr)          (dbl)    (dbl)    (dbl)      (dbl)         (dbl)     (chr)
1   OTU.1    0.028017773 1.676135 1.773391 0.09725564           100 emperical
2  OTU.10    0.001172550 1.676135 1.773391 0.09725564           100 emperical
3 OTU.100    0.001049124 1.676135 1.773391 0.09725564           100 emperical
Variables not shown: richness (chr)

In [76]:
%%R -h 400
## plotting
ggplot(df.j, aes(mean_rel_abund, BD_range_perc, color=richness)) +
    geom_point(alpha=0.5, shape='O') +
    scale_x_log10() +
    scale_y_continuous() +
    labs(x='Pre-fractionation abundance', y='% of total BD range') +
    facet_grid(dataset ~ .) +
    theme_bw() +
    theme(
        text = element_text(size=16),
        panel.grid = element_blank()#,
        #legend.position = 'none'
        )


Notes:

  • Higher richness may have actually lowered BD span
    • Would need replicates to tell for sure