In [1]:
workDir = '/home/nick/notebook/grinderSIP/dev/PDF-PDF/bac_genome10/'
scriptDir = '/home/nick/notebook/grinderSIP/'
In [2]:
%load_ext rpy2.ipython
In [3]:
%%R
library(ggplot2)
library(reshape)
@ system76-server:~/notebook/grinderSIP/dev/PDF-PDF/bac_genome10
$ ../../../SIPSim fragGC genomes/genomes10.txt --fp ~/notebook/grinderSIP/dev/PDF-PDF/bac_genome10/genomes/ \
--fr 515Fm-927Rm.fna --np 10 > genome10_ampFragGC.txt
~~~ $ ../../../SIPSim fragGC genomes/genomes10.txt --fp ~/notebook/grinderSIP/dev/PDF-PDF/bac_genome10/genomes/ \ --np 10 > genome10_shotFragGC.txt
In [91]:
@ system76-server:~/notebook/grinderSIP/dev/PDF-PDF/bac_genome10
~~~
$ ../../../SIPSim gradientComms genomes/genomes10.txt --fp ~/notebook/grinderSIP/dev/PDF-PDF/bac_genome10/genomes/ \
--pf grinder_profile --exe /home/nick/notebook/grinderSIP/bin/grinder/script/grinder > genome10_comm_n3.txt
~~~
In [267]:
import os
# making config file
config = """
[library 1]
# baseline: no incorp
[[intraPopDist 1]]
distribution = uniform
weight = 1
[[[start]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[[[end]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[library 2]
# split intra-populations
## to get some taxa with split; use inter-pop mixture for 2nd intra-pop mu, where mixture is highly uneven
[[intraPopDist 1]]
distribution = normal
weight = 0.5
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 90
sigma = 2
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 5
sigma = 2
[[intraPopDist 2]]
distribution = normal
weight = 0.5
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 5
sigma = 2
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 5
sigma = 2
[library 3]
# split inter-pop distribution (some approx. full; others none)
[[intraPopDist 1]]
distribution = normal
weight = 1
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 90
sigma = 2
# these taxa in the community get no incorp
[[[[interPopDist 2]]]]
distribution = uniform
start = 0
end = 0
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 5
sigma = 2
"""
outfile = os.path.join(workDir, 'genome10_n3.config')
outf = open(outfile, 'wb')
outf.write(config)
outf.close()
In [269]:
%%bash -s "$workDir"
cd $1
../../../SIPSim isoIncorp genome10_comm_n3.txt genome10_n3.config\
> genome10_comm_n3_incorp.txt
In [270]:
%%R
library(ggplot2)
library(dplyr)
In [354]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_comm_n3_incorp.txt'), collapse='/')
tbl = read.csv(infile, sep='\t')
In [358]:
%%R -w 700
tbl$taxon_name = reorder(tbl$taxon_name, tbl$param_value, max)
ggplot(tbl, aes(taxon_name, param_value, color=param)) +
geom_point() +
facet_grid(param ~ library, scales='free_y') +
theme(
text = element_text(size=16),
axis.text.x = element_text(angle=90, hjust=1),
axis.title.x = element_blank(),
axis.title.y = element_blank()
)
In [273]:
%%bash -s "$workDir"
cd $1
../../../SIPSim fractions genome10_comm_n3.txt \
> genome10_comm_n3_fracs.txt
In [274]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_comm_n3_fracs.txt'), collapse='/')
tbl = read.csv(infile, sep='\t')
In [275]:
%%R -w 700
#tbl$taxon_name = reorder(tbl$taxon_name, tbl$param_value, max)
tbl$library = as.character(tbl$library)
ggplot(tbl, aes(library, fraction_size)) +
geom_boxplot()
In [276]:
%%R -h 300
tbl_sum = group_by(tbl, library) %>%
summarize( n_fracs = n())
ggplot(tbl_sum, aes(library, n_fracs)) +
geom_bar(stat='identity')
In [330]:
%%bash -s "$workDir"
%%timeit
cd $1
../../../SIPSim OTU_table \
genome10_shotFragGC.txt genome10_comm_n3.txt \
genome10_comm_n3_incorp.txt genome10_comm_n3_fracs.txt \
--abs_abund 1e6 > genome10_OTU_abnd1e6.txt
In [367]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_OTU_abnd1e6.txt'), collapse='/')
tbl = read.csv(infile, sep='\t', row.names=1)
tbl$taxon_name = rownames(tbl)
In [368]:
%%R
tbl.m = melt(tbl, id.var=c('taxon_name'))
colnames(tbl.m) = c('taxon_name', 'variable', 'abundance')
tbl.m$lib = gsub('X|\\..+', '', tbl.m$variable)
tbl.m$BD_min = gsub('X[0-9]+\\.([0-9]+\\.[0-9]+).+', '\\1', tbl.m$variable)
tbl.m$BD_min = as.numeric(tbl.m$BD_min)
tbl.m$BD_max = gsub('X[0-9]+\\.[0-9]+\\.[0-9]+\\.(.+)', '\\1', tbl.m$variable)
tbl.m$BD_max = as.numeric(tbl.m$BD_max)
In [369]:
%%R -w 800
ggplot(tbl.m, aes(BD_min, abundance, color=taxon_name, group=taxon_name)) +
geom_point(size=1.5) +
geom_line(alpha=0.5) +
facet_grid(lib ~ .) +
theme( text = element_text(size=16) )
In [370]:
%%R -w 800
ggplot(tbl.m, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', alpha=0.5, position='dodge') +
facet_grid(lib ~ .) +
labs(x='Buoyant density') +
theme( text = element_text(size=16) )
In [373]:
%%R -w 800 -h 800
tbl.m2 = tbl.m
tbl.m2$taxon_name = gsub("_","\n", tbl.m2$taxon_name)
ggplot(tbl.m2, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', alpha=0.5, position='dodge') +
facet_grid(taxon_name ~ lib) +
labs(x='Buoyant density') +
theme( text = element_text(size=16) )
In [372]:
%%R -w 800 -h 800
tbl.m2 = tbl.m
tbl.m2$taxon_name = gsub("_","\n", tbl.m2$taxon_name)
ggplot(tbl.m2, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', position='fill') +
facet_grid(lib ~ .) +
theme( text = element_text(size=16) )
In [285]:
import os
# making config file
config = """
[library 1]
# no incorp
[[intraPopDist 1]]
distribution = uniform
weight = 1
[[[start]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[[[end]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[library 2]
# no incorp
[[intraPopDist 1]]
distribution = uniform
weight = 1
[[[start]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[[[end]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[library 3]
# no incorp
[[intraPopDist 1]]
distribution = uniform
weight = 1
[[[start]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
[[[end]]]
[[[[interPopDist 1]]]]
distribution = uniform
start = 0
end = 0
"""
outfile = os.path.join(workDir, 'genome10_n3_noInc.config')
outf = open(outfile, 'wb')
outf.write(config)
outf.close()
In [290]:
%%bash -s "$workDir"
cd $1
../../../SIPSim isoIncorp --percTaxa 50 genome10_comm_n3.txt genome10_n3_noInc.config \
> genome10_comm_n3_noIncorp.txt
In [304]:
%%bash -s "$workDir"
%time
cd $1
../../../SIPSim OTU_table \
genome10_shotFragGC.txt genome10_comm_n3.txt \
genome10_comm_n3_noIncorp.txt genome10_comm_n3_fracs.txt \
--abs_abund 1e6 > genome10_OTU_noInc_abnd1e6.txt
In [347]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_OTU_noInc_abnd1e6.txt'), collapse='/')
tbl = read.csv(infile, sep='\t', row.names=1)
tbl$taxon_name = rownames(tbl)
# editing table
tbl.m = melt(tbl, id.var=c('taxon_name'))
colnames(tbl.m) = c('taxon_name', 'variable', 'abundance')
tbl.m$lib = gsub('X|\\..+', '', tbl.m$variable)
tbl.m$BD_min = gsub('X[0-9]+\\.([0-9]+\\.[0-9]+).+', '\\1', tbl.m$variable)
tbl.m$BD_min = as.numeric(tbl.m$BD_min)
tbl.m$BD_max = gsub('X[0-9]+\\.[0-9]+\\.[0-9]+\\.(.+)', '\\1', tbl.m$variable)
tbl.m$BD_max = as.numeric(tbl.m$BD_max)
In [351]:
%%R -w 800
ggplot(tbl.m, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', alpha=0.5, position='dodge') +
facet_grid(lib ~ .) +
labs(title='No isotope incorporation', x='Buoyant density') +
theme( text = element_text(size=16) )
In [352]:
%%R -w 800
ggplot(tbl.m, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', position='fill') +
facet_grid(lib ~ .) +
labs(title='No isotope incorporation', x='Buoyant density') +
theme( text = element_text(size=16) )
In [308]:
import os
# making config file
config = """
[library 1]
# normal distribution
[[intraPopDist 1]]
distribution = normal
weight = 1
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 90
sigma = 2
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 2
sigma = 0.1
[library 2]
# normal distribution
[[intraPopDist 1]]
distribution = normal
weight = 1
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 90
sigma = 2
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 2
sigma = 0.1
[library 3]
# normal distribution
[[intraPopDist 1]]
distribution = normal
weight = 1
[[[mu]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 90
sigma = 2
[[[sigma]]]
[[[[interPopDist 1]]]]
distribution = normal
mu = 2
sigma = 0.1
"""
outfile = os.path.join(workDir, 'genome10_n3_norm.config')
outf = open(outfile, 'wb')
outf.write(config)
outf.close()
In [309]:
%%bash -s "$workDir"
cd $1
../../../SIPSim isoIncorp --percTaxa 100 \
genome10_comm_n3.txt genome10_n3_norm.config \
> genome10_comm_n3_normIncorp.txt
In [310]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_comm_n3_normIncorp.txt'), collapse='/')
tbl = read.csv(infile, sep='\t')
In [311]:
%%R -w 700
tbl$taxon_name = reorder(tbl$taxon_name, tbl$param_value, max)
ggplot(tbl, aes(taxon_name, param_value, color=param)) +
geom_point() +
facet_grid(param ~ library, scales='free_y') +
theme(
text = element_text(size=16),
axis.text.x = element_text(angle=90)
)
In [312]:
%%bash -s "$workDir"
cd $1
../../../SIPSim OTU_table \
genome10_shotFragGC.txt genome10_comm_n3.txt \
genome10_comm_n3_normIncorp.txt genome10_comm_n3_fracs.txt \
--abs_abund 1e4 > genome10_OTU_normInc_abnd1e4.txt
In [313]:
%%R -i workDir
infile = paste(c(workDir, 'genome10_OTU_normInc_abnd1e4.txt'), collapse='/')
tbl = read.csv(infile, sep='\t', row.names=1)
tbl$taxon_name = rownames(tbl)
# editing table
tbl.m = melt(tbl, id.var=c('taxon_name'))
colnames(tbl.m) = c('taxon_name', 'variable', 'abundance')
tbl.m$lib = gsub('X|\\..+', '', tbl.m$variable)
tbl.m$BD_min = gsub('X[0-9]+\\.([0-9]+\\.[0-9]+).+', '\\1', tbl.m$variable)
tbl.m$BD_min = as.numeric(tbl.m$BD_min)
tbl.m$BD_max = gsub('X[0-9]+\\.[0-9]+\\.[0-9]+\\.(.+)', '\\1', tbl.m$variable)
tbl.m$BD_max = as.numeric(tbl.m$BD_max)
In [314]:
%%R -w 1000
ggplot(tbl.m, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
#geom_area(stat='identity', alpha=0.5, position='dodge') +
geom_point(aes(color=taxon_name)) +
geom_line(aes(color=taxon_name)) +
facet_grid(lib ~ .) +
theme( text = element_text(size=16) )
In [315]:
%%R -w 600 -h 900
tbl.m2 = tbl.m
tbl.m2$taxon_name = gsub("_","\n", tbl.m2$taxon_name)
ggplot(tbl.m2, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', alpha=0.5, position='dodge') +
facet_grid(taxon_name ~ lib) +
theme( text = element_text(size=16),
legend.position = 'None'
)
In [ ]:
%%R -w 1000
ggplot(tbl.m, aes(BD_min, abundance, fill=taxon_name, group=taxon_name)) +
geom_area(stat='identity', alpha=0.5, position='fill') +
facet_grid(lib ~ .) +
theme( text = element_text(size=16) )
In [241]:
from scipy import linspace
from scipy import pi,sqrt,exp
from scipy.special import erf
from pylab import plot,show
def pdf(x):
return 1/sqrt(2*pi) * exp(-x**2/2)
def cdf(x):
return (1 + erf(x/sqrt(2))) / 2
def skew(x,e=0,w=1,a=0):
t = (x-e) / w
return 2 / w * pdf(t) * cdf(a*t)
# You can of course use the scipy.stats.norm versions
# return 2 * norm.pdf(t) * norm.cdf(a*t)
n = 2**10
e = 1.0 # location
w = 10.0 # scale
x = linspace(-30,10,n)
for a in range(-5,0):
p = skew(x,e,w,a)
plot(x,p)
show()
In [253]:
import scipy.stats as ss
In [259]:
print ss.norm.stats(moments='mvsk')
In [144]:
import scipy
a, b = 0.1, 2.0
tn = scipy.stats.truncnorm(a,b)
In [164]:
from ggplot import *
import pandas as pd
In [263]:
import pymc
In [274]:
help(pymc.distributions.rskew_normal)
In [304]:
df = pd.DataFrame(pymc.distributions.rskew_normal(11000,10000,-100,size=10000)**10, columns=['x'])
In [328]:
import math
In [ ]:
In [358]:
df = pd.DataFrame(pymc.distributions.rnormal(math.log(10),math.log(10),size=10000)**2, columns=['x'])
In [369]:
df = pd.DataFrame(np.random.triangular(-3,7,8,10000), columns=['x'])
In [370]:
ggplot(aes(x='x'), data=df) + \
geom_histogram()
Out[370]:
In [250]:
import scipy.stats as ss
class skew_norm_gen(ss.rv_continuous):
def pdf(self, x, s):
return 2 * ss.norm.pdf(x) * ss.norm.cdf(x * s)
skew_norm = skew_norm_gen(name='skew_norm', shapes='s')
skew_norm.pdf(np.array([1,2,3]), 4)
Out[250]:
In [243]:
In [117]:
a = set([1,2,3])
b = set([2])
a - b
Out[117]:
In [125]:
print tree.all_intervals
In [46]:
from intervaltree import Interval, IntervalTree
In [47]:
tree = IntervalTree()
In [126]:
tree.addi(1,10, ['a',10])
tree.addi(3,6, ['b',4])
tree.addi(3,6, ['c',4])
print tree.all_intervals
In [49]:
tree.print_structure()
In [108]:
def calcPercOverlap(iv1, iv2):
if not iv1.overlaps(iv2):
return 0.0
tmpTree = IntervalTree()
tmpTree.addi(iv1.begin, iv1.end, iv1.data)
tmpTree.addi(iv2.begin, iv2.end, iv2.data)
tmpTree.split_overlaps()
if len(tmpTree) == 1:
return 100.0
for iv in tmpTree.iter():
overlaps = tmpTree.search(iv.begin, iv.end)
if len(overlaps) == 2:
ivo = overlaps.pop()
return float(ivo.end - ivo.begin) / ivo.data[1] * 100
elif len(overlaps) > 2:
raise ValueError()
In [109]:
for iv in tree.iter():
overlaps = tree.search(iv.begin, iv.end)
for iv2 in overlaps:
print calcPercOverlap(iv1, iv2)
In [50]:
iv1 = [x for x in tree.all_intervals][0]
iv2 = [x for x in tree.all_intervals][1]
In [72]:
tmpTree = IntervalTree()
tmpTree.addi(iv1.begin, iv1.end, iv1.data)
tmpTree.addi(iv2.begin, iv2.end, iv2.data)
tmpTree.split_overlaps()
for iv in tmpTree.iter():
overlaps = tmpTree.search(iv.begin, iv.end)
if len(overlaps) == 2:
ivo = overlaps.pop()
print float(ivo.end - ivo.begin) / ivo.data[1]
elif len(overlaps) > 2:
raise ValueError()
In [70]:
[[x.begin,x.end,x.data] for x in overlaps]
Out[70]:
In [ ]:
In [73]:
import itertools
In [77]:
for x in itertools.product(range(3), range(3)):
print x
In [79]:
def calcPercOverlap(iv1, iv2):
tmpTree = IntervalTree()
tmpTree.addi(iv1.begin, iv1.end, iv1.data)
tmpTree.addi(iv2.begin, iv2.end, iv2.data)
tmpTree.split_overlaps()
if
for iv in tmpTree.iter():
overlaps = tmpTree.search(iv.begin, iv.end)
if len(overlaps) == 2:
ivo = overlaps.pop()
print float(ivo.end - ivo.begin) / ivo.data[1]
elif len(overlaps) > 2:
raise ValueError()
In [87]:
for ints in itertools.product(tree.all_intervals, tree.all_intervals):
print '---'
if ints[0].overlaps(ints[1]):
#tmpTree = IntervalTree()
#tmpTree.addi(ints[0].begin, ints[0].end, ints[0].data)
#tmpTree.addi(ints[1].begin, ints[1].end, ints[1].data)
#print float(ivo.end - ivo.begin) / ivo.data[1]
calcPercOverlap(ints[0], ints[1])
else:
pass
# elif len(overlaps) > 2:
# raise ValueError()
# else:
In [90]:
for ints in itertools.product(tree.all_intervals, tree.all_intervals):
print sorted(ints, key=lambda x: x.data[1])[0]