WARNING:tensorflow:From /srv/conda/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:1047: calling reduce_prod (from tensorflow.python.ops.math_ops) with keep_dims is deprecated and will be removed in a future version.
Instructions for updating:
keep_dims is deprecated, use keepdims instead
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
____________________________________________________________________________________________________
block1_conv1 (Convolution2D) (None, 224, 224, 64) 1792 input_1[0][0]
____________________________________________________________________________________________________
block1_conv2 (Convolution2D) (None, 224, 224, 64) 36928 block1_conv1[0][0]
____________________________________________________________________________________________________
block1_pool (MaxPooling2D) (None, 112, 112, 64) 0 block1_conv2[0][0]
____________________________________________________________________________________________________
block2_conv1 (Convolution2D) (None, 112, 112, 128) 73856 block1_pool[0][0]
____________________________________________________________________________________________________
block2_conv2 (Convolution2D) (None, 112, 112, 128) 147584 block2_conv1[0][0]
____________________________________________________________________________________________________
block2_pool (MaxPooling2D) (None, 56, 56, 128) 0 block2_conv2[0][0]
____________________________________________________________________________________________________
block3_conv1 (Convolution2D) (None, 56, 56, 256) 295168 block2_pool[0][0]
____________________________________________________________________________________________________
block3_conv2 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv1[0][0]
____________________________________________________________________________________________________
block3_conv3 (Convolution2D) (None, 56, 56, 256) 590080 block3_conv2[0][0]
____________________________________________________________________________________________________
block3_pool (MaxPooling2D) (None, 28, 28, 256) 0 block3_conv3[0][0]
____________________________________________________________________________________________________
block4_conv1 (Convolution2D) (None, 28, 28, 512) 1180160 block3_pool[0][0]
____________________________________________________________________________________________________
block4_conv2 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv1[0][0]
____________________________________________________________________________________________________
block4_conv3 (Convolution2D) (None, 28, 28, 512) 2359808 block4_conv2[0][0]
____________________________________________________________________________________________________
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0 block4_conv3[0][0]
____________________________________________________________________________________________________
block5_conv1 (Convolution2D) (None, 14, 14, 512) 2359808 block4_pool[0][0]
____________________________________________________________________________________________________
block5_conv2 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv1[0][0]
____________________________________________________________________________________________________
block5_conv3 (Convolution2D) (None, 14, 14, 512) 2359808 block5_conv2[0][0]
____________________________________________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0 block5_conv3[0][0]
____________________________________________________________________________________________________
flatten (Flatten) (None, 25088) 0 block5_pool[0][0]
____________________________________________________________________________________________________
fc1 (Dense) (None, 4096) 102764544 flatten[0][0]
____________________________________________________________________________________________________
fc2 (Dense) (None, 4096) 16781312 fc1[0][0]
____________________________________________________________________________________________________
predictions (Dense) (None, 1000) 4097000 fc2[0][0]
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________