Statistics using SAS

  • proc freq
  • proc means
  • proc corr
  • proc sgplot
  • proc sgscatter
  • proc anova
  • proc univariate
  • proc ttest
  • proc reg
  • proc glm
  • proc glmselect
  • proc plm
  • ods graphics on/off

      PROC REG < options > ;
      < label: > MODEL dependents=<regressors></ options > ;
      BY variables ;
      FREQ variable ;
      ID variables ;
      VAR variables ;
      WEIGHT variable ;
      ADD variables ;
      DELETE variables ;
      < label: > MTEST <equation, : : : ,equation> </ options > ;
      OUTPUT < OUT=SAS-data-set > keyword=names
      < : : : keyword=names > ;
      PAINT <condition j ALLOBS>
      < / options > j < STATUS | UNDO> ;
      PLOT <yvariable*xvariable> <=symbol>
      < : : :yvariable*xvariable> <=symbol> </ options > ;
      PRINT < options > < ANOVA > < MODELDATA > ;
      REFIT;
      RESTRICT equation, : : : ,equation ;
      REWEIGHT <condition j ALLOBS>
      < / options > j < STATUS | UNDO> ;
      < label: > TEST equation,<; : : :,equation> </ option > ;

In [1]:
%let path=/folders/myfolders/ECST131;
libname statdata "&path";


Out[1]:

11   ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
12
13 %let path=/folders/myfolders/ECST131;
14 libname statdata "&path";
NOTE: Libref STATDATA was successfully assigned as follows:
Engine: V9
Physical Name: /folders/myfolders/ECST131
15 ods html5 close;ods listing;

16

Proc Corr

Standard error for correlation:

$$St_{\rho} = \sqrt{\frac{1-r^{2}}{n-2}}$$

The NOSIMPLE option tells the procedure that you do not want the default output of means and standard deviations for each of the variables in the VAR and WITH lists. The RANK option says to order the correlations from largest to smallest (by their absolute values).

Two types of plots are available when you use ODS Graphics with PROC CORR, a panel or matrix of scatter plots (as the one above) or individual scatter plots.

The ONLY option says that you want only separate bivariate plots for each variable pair, rather than the scatter plot matrix that is produced by default. By default, the maximum number of individual plots is also set at five.

You can use the same NVAR= option to request additional scatter plots as you used with the matrix plot.

The RANK option says to order the correlations from largest to smallest (by their absolute values).


In [2]:
proc print data=statdata.fitness;
run;


Out[2]:
SAS Output

The SAS System

Obs Name Gender RunTime Age Weight Oxygen_Consumption Run_Pulse Rest_Pulse Maximum_Pulse Performance
1 Donna F 8.17 42 68.15 59.57 166 40 172 90
2 Gracie F 8.63 38 81.87 60.06 170 48 186 94
3 Luanne F 8.65 43 85.84 54.30 156 45 168 83
4 Mimi F 8.92 50 70.87 54.63 146 48 155 67
5 Chris M 8.95 49 81.42 49.16 180 44 185 72
6 Allen M 9.22 38 89.02 49.87 178 55 180 92
7 Nancy F 9.40 49 76.32 48.67 186 56 188 64
8 Patty F 9.63 52 76.32 45.44 164 48 166 56
9 Suzanne F 9.93 57 59.08 50.55 148 49 155 43
10 Teresa F 10.00 51 77.91 46.67 162 48 168 54
11 Bob M 10.07 40 75.07 45.31 185 62 185 79
12 Harriett F 10.08 49 73.37 50.39 168 67 168 57
13 Jane F 10.13 44 73.03 50.54 168 45 168 67
14 Harold M 10.25 48 91.63 46.77 162 48 164 61
15 Sammy M 10.33 54 83.12 51.85 166 50 170 49
16 Buffy F 10.47 52 73.71 45.79 186 59 188 47
17 Trent M 10.50 52 82.78 47.47 170 53 172 51
18 Jackie F 10.60 47 79.15 47.27 162 47 164 56
19 Ralph M 10.85 43 81.19 49.09 162 64 170 65
20 Jack M 10.95 51 69.63 40.84 168 57 172 48
21 Annie F 11.08 51 67.25 45.12 172 48 172 43
22 Kate F 11.12 45 66.45 44.75 176 51 176 55
23 Carl M 11.17 54 79.38 46.08 156 62 165 40
24 Don M 11.37 44 89.47 44.61 178 62 182 58
25 Effie F 11.50 48 61.24 47.92 170 52 176 45
26 George M 11.63 47 77.45 44.81 176 58 176 50
27 Iris F 11.95 40 75.98 45.68 176 70 180 56
28 Mark M 12.63 57 73.37 39.41 174 58 176 20
29 Steve M 12.88 54 91.63 39.20 168 44 172 23
30 Vaughn M 13.08 44 81.42 39.44 174 63 176 41
31 William M 14.03 45 87.66 37.39 186 56 192 30

In [3]:
proc corr data=statdata.fitness rank pearson spearman
     plots(only)=scatter(nvar=all ellipse=none);
   var RunTime Age Weight Run_Pulse
       Rest_Pulse Maximum_Pulse Performance;
   with Oxygen_Consumption;
   title "Correlations and Scatter Plots with Oxygen_Consumption";
run;
title;


Out[3]:
SAS Output

Correlations and Scatter Plots with Oxygen_Consumption

The CORR Procedure

1 With Variables: Oxygen_Consumption
7 Variables: RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance
Simple Statistics
Variable N Mean Std Dev Median Minimum Maximum
Oxygen_Consumption 31 47.37581 5.32777 46.77000 37.39000 60.06000
RunTime 31 10.58613 1.38741 10.47000 8.17000 14.03000
Age 31 47.67742 5.26236 48.00000 38.00000 57.00000
Weight 31 77.44452 8.32857 77.45000 59.08000 91.63000
Run_Pulse 31 169.64516 10.25199 170.00000 146.00000 186.00000
Rest_Pulse 31 53.45161 7.61944 52.00000 40.00000 70.00000
Maximum_Pulse 31 173.77419 9.16410 172.00000 155.00000 192.00000
Performance 31 56.64516 18.32584 56.00000 20.00000 94.00000
Pearson Correlation Coefficients, N = 31
Prob > |r| under H0: Rho=0
Oxygen_Consumption
RunTime
-0.86219
<.0001
Performance
0.77890
<.0001
Rest_Pulse
-0.39935
0.0260
Run_Pulse
-0.39808
0.0266
Age
-0.31162
0.0879
Maximum_Pulse
-0.23677
0.1997
Weight
-0.16289
0.3813
Spearman Correlation Coefficients, N = 31
Prob > |r| under H0: Rho=0
Oxygen_Consumption
RunTime
-0.80806
<.0001
Performance
0.65503
<.0001
Run_Pulse
-0.43748
0.0138
Rest_Pulse
-0.38028
0.0348
Maximum_Pulse
-0.32239
0.0769
Age
-0.19327
0.2975
Weight
-0.09318
0.6181

Correlations and Scatter Plots with Oxygen_Consumption

The CORR Procedure

IMAGEMAP=ON option after a slash in the ODS GRAPHICS statement enables the tooltip feature.


In [4]:
ods graphics on / imagemap=on;
proc corr data=statdata.fitness 
     plots=matrix(nvar=all histogram); 
   var RunTime Age Weight Run_Pulse
       Rest_Pulse Maximum_Pulse Performance;
   id name;
   title "Correlation Matrix and Scatter Plot Matrix of Fitness Predictors";
run;
title;


Out[4]:
SAS Output

Correlation Matrix and Scatter Plot Matrix of Fitness Predictors

The CORR Procedure

7 Variables: RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
RunTime 31 10.58613 1.38741 328.17000 8.17000 14.03000
Age 31 47.67742 5.26236 1478 38.00000 57.00000
Weight 31 77.44452 8.32857 2401 59.08000 91.63000
Run_Pulse 31 169.64516 10.25199 5259 146.00000 186.00000
Rest_Pulse 31 53.45161 7.61944 1657 40.00000 70.00000
Maximum_Pulse 31 173.77419 9.16410 5387 155.00000 192.00000
Performance 31 56.64516 18.32584 1756 20.00000 94.00000
Pearson Correlation Coefficients, N = 31
Prob > |r| under H0: Rho=0
  RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance
RunTime
1.00000
 
0.19523
0.2926
0.14351
0.4412
0.31365
0.0858
0.45038
0.0110
0.22610
0.2213
-0.82049
<.0001
Age
0.19523
0.2926
1.00000
 
-0.24050
0.1925
-0.31607
0.0832
-0.15087
0.4178
-0.41490
0.0203
-0.71257
<.0001
Weight
0.14351
0.4412
-0.24050
0.1925
1.00000
 
0.18152
0.3284
0.04397
0.8143
0.24938
0.1761
0.08974
0.6312
Run_Pulse
0.31365
0.0858
-0.31607
0.0832
0.18152
0.3284
1.00000
 
0.35246
0.0518
0.92975
<.0001
-0.02943
0.8751
Rest_Pulse
0.45038
0.0110
-0.15087
0.4178
0.04397
0.8143
0.35246
0.0518
1.00000
 
0.30512
0.0951
-0.22560
0.2224
Maximum_Pulse
0.22610
0.2213
-0.41490
0.0203
0.24938
0.1761
0.92975
<.0001
0.30512
0.0951
1.00000
 
0.09002
0.6301
Performance
-0.82049
<.0001
-0.71257
<.0001
0.08974
0.6312
-0.02943
0.8751
-0.22560
0.2224
0.09002
0.6301
1.00000
 
 RunTime = 14.4 
 Percent = 3.2258  RunTime = 14.4 
 Percent = 3.2258  RunTime = 13.2 
 Percent = 9.6774  RunTime = 13.2 
 Percent = 9.6774  RunTime = 12 
 Percent = 9.6774  RunTime = 12 
 Percent = 9.6774  RunTime = 10.8 
 Percent = 35.484  RunTime = 10.8 
 Percent = 35.484  RunTime = 9.6 
 Percent = 25.806  RunTime = 9.6 
 Percent = 25.806  RunTime = 8.4 
 Percent = 16.129  RunTime = 8.4 
 Percent = 16.129  RunTime = 14.03 
 Age = 45 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Age = 44 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Age = 54 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Age = 57 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Age = 40 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Age = 47 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Age = 48 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Age = 44 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Age = 54 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Age = 45 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Age = 51 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Age = 51 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Age = 43 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Age = 47 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Age = 52 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Age = 52 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Age = 54 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Age = 48 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Age = 44 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Age = 49 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Age = 40 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Age = 51 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Age = 57 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Age = 52 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Age = 49 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Age = 38 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Age = 49 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Age = 50 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Age = 43 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Age = 38 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Age = 42 
 Observation = 1 
 Name = Donna  RunTime = 14.03 
 Weight = 87.66 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Weight = 77.45 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Weight = 89.47 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  RunTime = 14.03 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  RunTime = 14.03 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  RunTime = 14.03 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  RunTime = 14.03 
 Performance = 30 
 Observation = 31 
 Name = William  RunTime = 13.08 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  RunTime = 12.88 
 Performance = 23 
 Observation = 29 
 Name = Steve  RunTime = 12.63 
 Performance = 20 
 Observation = 28 
 Name = Mark  RunTime = 11.95 
 Performance = 56 
 Observation = 27 
 Name = Iris  RunTime = 11.63 
 Performance = 50 
 Observation = 26 
 Name = George  RunTime = 11.5 
 Performance = 45 
 Observation = 25 
 Name = Effie  RunTime = 11.37 
 Performance = 58 
 Observation = 24 
 Name = Don  RunTime = 11.17 
 Performance = 40 
 Observation = 23 
 Name = Carl  RunTime = 11.12 
 Performance = 55 
 Observation = 22 
 Name = Kate  RunTime = 11.08 
 Performance = 43 
 Observation = 21 
 Name = Annie  RunTime = 10.95 
 Performance = 48 
 Observation = 20 
 Name = Jack  RunTime = 10.85 
 Performance = 65 
 Observation = 19 
 Name = Ralph  RunTime = 10.6 
 Performance = 56 
 Observation = 18 
 Name = Jackie  RunTime = 10.5 
 Performance = 51 
 Observation = 17 
 Name = Trent  RunTime = 10.47 
 Performance = 47 
 Observation = 16 
 Name = Buffy  RunTime = 10.33 
 Performance = 49 
 Observation = 15 
 Name = Sammy  RunTime = 10.25 
 Performance = 61 
 Observation = 14 
 Name = Harold  RunTime = 10.13 
 Performance = 67 
 Observation = 13 
 Name = Jane  RunTime = 10.08 
 Performance = 57 
 Observation = 12 
 Name = Harriett  RunTime = 10.07 
 Performance = 79 
 Observation = 11 
 Name = Bob  RunTime = 10 
 Performance = 54 
 Observation = 10 
 Name = Teresa  RunTime = 9.93 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  RunTime = 9.63 
 Performance = 56 
 Observation = 8 
 Name = Patty  RunTime = 9.4 
 Performance = 64 
 Observation = 7 
 Name = Nancy  RunTime = 9.22 
 Performance = 92 
 Observation = 6 
 Name = Allen  RunTime = 8.95 
 Performance = 72 
 Observation = 5 
 Name = Chris  RunTime = 8.92 
 Performance = 67 
 Observation = 4 
 Name = Mimi  RunTime = 8.65 
 Performance = 83 
 Observation = 3 
 Name = Luanne  RunTime = 8.63 
 Performance = 94 
 Observation = 2 
 Name = Gracie  RunTime = 8.17 
 Performance = 90 
 Observation = 1 
 Name = Donna  Age = 45 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Age = 44 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Age = 54 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Age = 57 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Age = 40 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Age = 47 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Age = 48 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Age = 44 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Age = 54 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Age = 45 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Age = 51 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Age = 51 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Age = 43 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Age = 47 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Age = 52 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Age = 52 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Age = 54 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Age = 48 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Age = 44 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Age = 49 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Age = 40 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Age = 51 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Age = 57 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Age = 52 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Age = 49 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Age = 38 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Age = 49 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Age = 50 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Age = 43 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Age = 38 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Age = 42 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Age = 56 
 Percent = 16.129  Age = 56 
 Percent = 16.129  Age = 52 
 Percent = 22.581  Age = 52 
 Percent = 22.581  Age = 48 
 Percent = 22.581  Age = 48 
 Percent = 22.581  Age = 44 
 Percent = 25.806  Age = 44 
 Percent = 25.806  Age = 40 
 Percent = 12.903  Age = 40 
 Percent = 12.903  Age = 45 
 Weight = 87.66 
 Observation = 31 
 Name = William  Age = 44 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  Age = 54 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  Age = 57 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  Age = 40 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  Age = 47 
 Weight = 77.45 
 Observation = 26 
 Name = George  Age = 48 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  Age = 44 
 Weight = 89.47 
 Observation = 24 
 Name = Don  Age = 54 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  Age = 45 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  Age = 51 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  Age = 51 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  Age = 43 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  Age = 47 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  Age = 52 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  Age = 52 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  Age = 54 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  Age = 48 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  Age = 44 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  Age = 49 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  Age = 40 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  Age = 51 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  Age = 57 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  Age = 52 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  Age = 49 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  Age = 38 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  Age = 49 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  Age = 50 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  Age = 43 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  Age = 38 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  Age = 42 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  Age = 45 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  Age = 44 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  Age = 54 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  Age = 57 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  Age = 40 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  Age = 47 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  Age = 48 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  Age = 44 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  Age = 54 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  Age = 45 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  Age = 51 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  Age = 51 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  Age = 43 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  Age = 47 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  Age = 52 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  Age = 52 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  Age = 54 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  Age = 48 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  Age = 44 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  Age = 49 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  Age = 40 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  Age = 51 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  Age = 57 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  Age = 52 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  Age = 49 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  Age = 38 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  Age = 49 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  Age = 50 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  Age = 43 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  Age = 38 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  Age = 42 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  Age = 45 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  Age = 44 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  Age = 54 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  Age = 57 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  Age = 40 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  Age = 47 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  Age = 48 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  Age = 44 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  Age = 54 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  Age = 45 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  Age = 51 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  Age = 51 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  Age = 43 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  Age = 47 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  Age = 52 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  Age = 52 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  Age = 54 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  Age = 48 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  Age = 44 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  Age = 49 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  Age = 40 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  Age = 51 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  Age = 57 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  Age = 52 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  Age = 49 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  Age = 38 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  Age = 49 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  Age = 50 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  Age = 43 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  Age = 38 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  Age = 42 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  Age = 45 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  Age = 44 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  Age = 54 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  Age = 57 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  Age = 40 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  Age = 47 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  Age = 48 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  Age = 44 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  Age = 54 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  Age = 45 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  Age = 51 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  Age = 51 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  Age = 43 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  Age = 47 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  Age = 52 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  Age = 52 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  Age = 54 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  Age = 48 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  Age = 44 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  Age = 49 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  Age = 40 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  Age = 51 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  Age = 57 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  Age = 52 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  Age = 49 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  Age = 38 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  Age = 49 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  Age = 50 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  Age = 43 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  Age = 38 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  Age = 42 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  Age = 45 
 Performance = 30 
 Observation = 31 
 Name = William  Age = 44 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  Age = 54 
 Performance = 23 
 Observation = 29 
 Name = Steve  Age = 57 
 Performance = 20 
 Observation = 28 
 Name = Mark  Age = 40 
 Performance = 56 
 Observation = 27 
 Name = Iris  Age = 47 
 Performance = 50 
 Observation = 26 
 Name = George  Age = 48 
 Performance = 45 
 Observation = 25 
 Name = Effie  Age = 44 
 Performance = 58 
 Observation = 24 
 Name = Don  Age = 54 
 Performance = 40 
 Observation = 23 
 Name = Carl  Age = 45 
 Performance = 55 
 Observation = 22 
 Name = Kate  Age = 51 
 Performance = 43 
 Observation = 21 
 Name = Annie  Age = 51 
 Performance = 48 
 Observation = 20 
 Name = Jack  Age = 43 
 Performance = 65 
 Observation = 19 
 Name = Ralph  Age = 47 
 Performance = 56 
 Observation = 18 
 Name = Jackie  Age = 52 
 Performance = 51 
 Observation = 17 
 Name = Trent  Age = 52 
 Performance = 47 
 Observation = 16 
 Name = Buffy  Age = 54 
 Performance = 49 
 Observation = 15 
 Name = Sammy  Age = 48 
 Performance = 61 
 Observation = 14 
 Name = Harold  Age = 44 
 Performance = 67 
 Observation = 13 
 Name = Jane  Age = 49 
 Performance = 57 
 Observation = 12 
 Name = Harriett  Age = 40 
 Performance = 79 
 Observation = 11 
 Name = Bob  Age = 51 
 Performance = 54 
 Observation = 10 
 Name = Teresa  Age = 57 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  Age = 52 
 Performance = 56 
 Observation = 8 
 Name = Patty  Age = 49 
 Performance = 64 
 Observation = 7 
 Name = Nancy  Age = 38 
 Performance = 92 
 Observation = 6 
 Name = Allen  Age = 49 
 Performance = 72 
 Observation = 5 
 Name = Chris  Age = 50 
 Performance = 67 
 Observation = 4 
 Name = Mimi  Age = 43 
 Performance = 83 
 Observation = 3 
 Name = Luanne  Age = 38 
 Performance = 94 
 Observation = 2 
 Name = Gracie  Age = 42 
 Performance = 90 
 Observation = 1 
 Name = Donna  Weight = 87.66 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Weight = 81.42 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Weight = 61.24 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Weight = 79.38 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Weight = 87.66 
 Age = 45 
 Observation = 31 
 Name = William  Weight = 81.42 
 Age = 44 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 Age = 54 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 Age = 57 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 Age = 40 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 Age = 47 
 Observation = 26 
 Name = George  Weight = 61.24 
 Age = 48 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 Age = 44 
 Observation = 24 
 Name = Don  Weight = 79.38 
 Age = 54 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 Age = 45 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 Age = 51 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 Age = 51 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 Age = 43 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 Age = 47 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 Age = 52 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 Age = 52 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 Age = 54 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 Age = 48 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 Age = 44 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 Age = 49 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 Age = 40 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 Age = 51 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 Age = 57 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 Age = 52 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 Age = 49 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 Age = 38 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 Age = 49 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 Age = 50 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 Age = 43 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 Age = 38 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 Age = 42 
 Observation = 1 
 Name = Donna  Weight = 92 
 Percent = 12.903  Weight = 92 
 Percent = 12.903  Weight = 84 
 Percent = 25.806  Weight = 84 
 Percent = 25.806  Weight = 76 
 Percent = 38.71  Weight = 76 
 Percent = 38.71  Weight = 68 
 Percent = 16.129  Weight = 68 
 Percent = 16.129  Weight = 60 
 Percent = 6.4516  Weight = 60 
 Percent = 6.4516  Weight = 87.66 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  Weight = 81.42 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  Weight = 61.24 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  Weight = 79.38 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  Weight = 87.66 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  Weight = 81.42 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  Weight = 61.24 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  Weight = 79.38 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  Weight = 87.66 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  Weight = 81.42 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  Weight = 61.24 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  Weight = 79.38 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  Weight = 87.66 
 Performance = 30 
 Observation = 31 
 Name = William  Weight = 81.42 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  Weight = 91.63 
 Performance = 23 
 Observation = 29 
 Name = Steve  Weight = 73.37 
 Performance = 20 
 Observation = 28 
 Name = Mark  Weight = 75.98 
 Performance = 56 
 Observation = 27 
 Name = Iris  Weight = 77.45 
 Performance = 50 
 Observation = 26 
 Name = George  Weight = 61.24 
 Performance = 45 
 Observation = 25 
 Name = Effie  Weight = 89.47 
 Performance = 58 
 Observation = 24 
 Name = Don  Weight = 79.38 
 Performance = 40 
 Observation = 23 
 Name = Carl  Weight = 66.45 
 Performance = 55 
 Observation = 22 
 Name = Kate  Weight = 67.25 
 Performance = 43 
 Observation = 21 
 Name = Annie  Weight = 69.63 
 Performance = 48 
 Observation = 20 
 Name = Jack  Weight = 81.19 
 Performance = 65 
 Observation = 19 
 Name = Ralph  Weight = 79.15 
 Performance = 56 
 Observation = 18 
 Name = Jackie  Weight = 82.78 
 Performance = 51 
 Observation = 17 
 Name = Trent  Weight = 73.71 
 Performance = 47 
 Observation = 16 
 Name = Buffy  Weight = 83.12 
 Performance = 49 
 Observation = 15 
 Name = Sammy  Weight = 91.63 
 Performance = 61 
 Observation = 14 
 Name = Harold  Weight = 73.03 
 Performance = 67 
 Observation = 13 
 Name = Jane  Weight = 73.37 
 Performance = 57 
 Observation = 12 
 Name = Harriett  Weight = 75.07 
 Performance = 79 
 Observation = 11 
 Name = Bob  Weight = 77.91 
 Performance = 54 
 Observation = 10 
 Name = Teresa  Weight = 59.08 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  Weight = 76.32 
 Performance = 56 
 Observation = 8 
 Name = Patty  Weight = 76.32 
 Performance = 64 
 Observation = 7 
 Name = Nancy  Weight = 89.02 
 Performance = 92 
 Observation = 6 
 Name = Allen  Weight = 81.42 
 Performance = 72 
 Observation = 5 
 Name = Chris  Weight = 70.87 
 Performance = 67 
 Observation = 4 
 Name = Mimi  Weight = 85.84 
 Performance = 83 
 Observation = 3 
 Name = Luanne  Weight = 81.87 
 Performance = 94 
 Observation = 2 
 Name = Gracie  Weight = 68.15 
 Performance = 90 
 Observation = 1 
 Name = Donna  Run_Pulse = 186 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Run_Pulse = 186 
 Age = 45 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 Age = 44 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 Age = 54 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 Age = 57 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 Age = 40 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 Age = 47 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 Age = 48 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 Age = 44 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 Age = 54 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 Age = 45 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 Age = 51 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 Age = 51 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 Age = 43 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 Age = 47 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 Age = 52 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 Age = 52 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 Age = 54 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 Age = 48 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 Age = 44 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 Age = 49 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 Age = 40 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 Age = 51 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 Age = 57 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 Age = 52 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 Age = 49 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 Age = 38 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 Age = 49 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 Age = 50 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 Age = 43 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 Age = 38 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 Age = 42 
 Observation = 1 
 Name = Donna  Run_Pulse = 186 
 Weight = 87.66 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 Weight = 77.45 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 Weight = 89.47 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  Run_Pulse = 185 
 Percent = 16.129  Run_Pulse = 185 
 Percent = 16.129  Run_Pulse = 175 
 Percent = 35.484  Run_Pulse = 175 
 Percent = 35.484  Run_Pulse = 165 
 Percent = 35.484  Run_Pulse = 165 
 Percent = 35.484  Run_Pulse = 155 
 Percent = 6.4516  Run_Pulse = 155 
 Percent = 6.4516  Run_Pulse = 145 
 Percent = 6.4516  Run_Pulse = 145 
 Percent = 6.4516  Run_Pulse = 186 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  Run_Pulse = 186 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  Run_Pulse = 186 
 Performance = 30 
 Observation = 31 
 Name = William  Run_Pulse = 174 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  Run_Pulse = 168 
 Performance = 23 
 Observation = 29 
 Name = Steve  Run_Pulse = 174 
 Performance = 20 
 Observation = 28 
 Name = Mark  Run_Pulse = 176 
 Performance = 56 
 Observation = 27 
 Name = Iris  Run_Pulse = 176 
 Performance = 50 
 Observation = 26 
 Name = George  Run_Pulse = 170 
 Performance = 45 
 Observation = 25 
 Name = Effie  Run_Pulse = 178 
 Performance = 58 
 Observation = 24 
 Name = Don  Run_Pulse = 156 
 Performance = 40 
 Observation = 23 
 Name = Carl  Run_Pulse = 176 
 Performance = 55 
 Observation = 22 
 Name = Kate  Run_Pulse = 172 
 Performance = 43 
 Observation = 21 
 Name = Annie  Run_Pulse = 168 
 Performance = 48 
 Observation = 20 
 Name = Jack  Run_Pulse = 162 
 Performance = 65 
 Observation = 19 
 Name = Ralph  Run_Pulse = 162 
 Performance = 56 
 Observation = 18 
 Name = Jackie  Run_Pulse = 170 
 Performance = 51 
 Observation = 17 
 Name = Trent  Run_Pulse = 186 
 Performance = 47 
 Observation = 16 
 Name = Buffy  Run_Pulse = 166 
 Performance = 49 
 Observation = 15 
 Name = Sammy  Run_Pulse = 162 
 Performance = 61 
 Observation = 14 
 Name = Harold  Run_Pulse = 168 
 Performance = 67 
 Observation = 13 
 Name = Jane  Run_Pulse = 168 
 Performance = 57 
 Observation = 12 
 Name = Harriett  Run_Pulse = 185 
 Performance = 79 
 Observation = 11 
 Name = Bob  Run_Pulse = 162 
 Performance = 54 
 Observation = 10 
 Name = Teresa  Run_Pulse = 148 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  Run_Pulse = 164 
 Performance = 56 
 Observation = 8 
 Name = Patty  Run_Pulse = 186 
 Performance = 64 
 Observation = 7 
 Name = Nancy  Run_Pulse = 178 
 Performance = 92 
 Observation = 6 
 Name = Allen  Run_Pulse = 180 
 Performance = 72 
 Observation = 5 
 Name = Chris  Run_Pulse = 146 
 Performance = 67 
 Observation = 4 
 Name = Mimi  Run_Pulse = 156 
 Performance = 83 
 Observation = 3 
 Name = Luanne  Run_Pulse = 170 
 Performance = 94 
 Observation = 2 
 Name = Gracie  Run_Pulse = 166 
 Performance = 90 
 Observation = 1 
 Name = Donna  Rest_Pulse = 56 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Rest_Pulse = 56 
 Age = 45 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 Age = 44 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 Age = 54 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 Age = 57 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 Age = 40 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 Age = 47 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 Age = 48 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 Age = 44 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 Age = 54 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 Age = 45 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 Age = 51 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 Age = 51 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 Age = 43 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 Age = 47 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 Age = 52 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 Age = 52 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 Age = 54 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 Age = 48 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 Age = 44 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 Age = 49 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 Age = 40 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 Age = 51 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 Age = 57 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 Age = 52 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 Age = 49 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 Age = 38 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 Age = 49 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 Age = 50 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 Age = 43 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 Age = 38 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 Age = 42 
 Observation = 1 
 Name = Donna  Rest_Pulse = 56 
 Weight = 87.66 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 Weight = 77.45 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 Weight = 89.47 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  Rest_Pulse = 56 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  Rest_Pulse = 69 
 Percent = 6.4516  Rest_Pulse = 69 
 Percent = 6.4516  Rest_Pulse = 63 
 Percent = 16.129  Rest_Pulse = 63 
 Percent = 16.129  Rest_Pulse = 57 
 Percent = 22.581  Rest_Pulse = 57 
 Percent = 22.581  Rest_Pulse = 51 
 Percent = 35.484  Rest_Pulse = 51 
 Percent = 35.484  Rest_Pulse = 45 
 Percent = 16.129  Rest_Pulse = 45 
 Percent = 16.129  Rest_Pulse = 39 
 Percent = 3.2258  Rest_Pulse = 39 
 Percent = 3.2258  Rest_Pulse = 56 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  Rest_Pulse = 56 
 Performance = 30 
 Observation = 31 
 Name = William  Rest_Pulse = 63 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  Rest_Pulse = 44 
 Performance = 23 
 Observation = 29 
 Name = Steve  Rest_Pulse = 58 
 Performance = 20 
 Observation = 28 
 Name = Mark  Rest_Pulse = 70 
 Performance = 56 
 Observation = 27 
 Name = Iris  Rest_Pulse = 58 
 Performance = 50 
 Observation = 26 
 Name = George  Rest_Pulse = 52 
 Performance = 45 
 Observation = 25 
 Name = Effie  Rest_Pulse = 62 
 Performance = 58 
 Observation = 24 
 Name = Don  Rest_Pulse = 62 
 Performance = 40 
 Observation = 23 
 Name = Carl  Rest_Pulse = 51 
 Performance = 55 
 Observation = 22 
 Name = Kate  Rest_Pulse = 48 
 Performance = 43 
 Observation = 21 
 Name = Annie  Rest_Pulse = 57 
 Performance = 48 
 Observation = 20 
 Name = Jack  Rest_Pulse = 64 
 Performance = 65 
 Observation = 19 
 Name = Ralph  Rest_Pulse = 47 
 Performance = 56 
 Observation = 18 
 Name = Jackie  Rest_Pulse = 53 
 Performance = 51 
 Observation = 17 
 Name = Trent  Rest_Pulse = 59 
 Performance = 47 
 Observation = 16 
 Name = Buffy  Rest_Pulse = 50 
 Performance = 49 
 Observation = 15 
 Name = Sammy  Rest_Pulse = 48 
 Performance = 61 
 Observation = 14 
 Name = Harold  Rest_Pulse = 45 
 Performance = 67 
 Observation = 13 
 Name = Jane  Rest_Pulse = 67 
 Performance = 57 
 Observation = 12 
 Name = Harriett  Rest_Pulse = 62 
 Performance = 79 
 Observation = 11 
 Name = Bob  Rest_Pulse = 48 
 Performance = 54 
 Observation = 10 
 Name = Teresa  Rest_Pulse = 49 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  Rest_Pulse = 48 
 Performance = 56 
 Observation = 8 
 Name = Patty  Rest_Pulse = 56 
 Performance = 64 
 Observation = 7 
 Name = Nancy  Rest_Pulse = 55 
 Performance = 92 
 Observation = 6 
 Name = Allen  Rest_Pulse = 44 
 Performance = 72 
 Observation = 5 
 Name = Chris  Rest_Pulse = 48 
 Performance = 67 
 Observation = 4 
 Name = Mimi  Rest_Pulse = 45 
 Performance = 83 
 Observation = 3 
 Name = Luanne  Rest_Pulse = 48 
 Performance = 94 
 Observation = 2 
 Name = Gracie  Rest_Pulse = 40 
 Performance = 90 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 Age = 45 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 Age = 44 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 Age = 54 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 Age = 57 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 Age = 40 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 Age = 47 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 Age = 48 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 Age = 44 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 Age = 54 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 Age = 45 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 Age = 51 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 Age = 51 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 Age = 43 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 Age = 47 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 Age = 52 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 Age = 52 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 Age = 54 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 Age = 48 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 Age = 44 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 Age = 49 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 Age = 40 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 Age = 51 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 Age = 57 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 Age = 52 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 Age = 49 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 Age = 38 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 Age = 49 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 Age = 50 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 Age = 43 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 Age = 38 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 Age = 42 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 Weight = 87.66 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 Weight = 77.45 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 Weight = 89.47 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  Maximum_Pulse = 192 
 Percent = 9.6774  Maximum_Pulse = 192 
 Percent = 9.6774  Maximum_Pulse = 184 
 Percent = 19.355  Maximum_Pulse = 184 
 Percent = 19.355  Maximum_Pulse = 176 
 Percent = 32.258  Maximum_Pulse = 176 
 Percent = 32.258  Maximum_Pulse = 168 
 Percent = 32.258  Maximum_Pulse = 168 
 Percent = 32.258  Maximum_Pulse = 160 
 Percent = 0  Maximum_Pulse = 160 
 Percent = 0  Maximum_Pulse = 152 
 Percent = 6.4516  Maximum_Pulse = 152 
 Percent = 6.4516  Maximum_Pulse = 192 
 Performance = 30 
 Observation = 31 
 Name = William  Maximum_Pulse = 176 
 Performance = 41 
 Observation = 30 
 Name = Vaughn  Maximum_Pulse = 172 
 Performance = 23 
 Observation = 29 
 Name = Steve  Maximum_Pulse = 176 
 Performance = 20 
 Observation = 28 
 Name = Mark  Maximum_Pulse = 180 
 Performance = 56 
 Observation = 27 
 Name = Iris  Maximum_Pulse = 176 
 Performance = 50 
 Observation = 26 
 Name = George  Maximum_Pulse = 176 
 Performance = 45 
 Observation = 25 
 Name = Effie  Maximum_Pulse = 182 
 Performance = 58 
 Observation = 24 
 Name = Don  Maximum_Pulse = 165 
 Performance = 40 
 Observation = 23 
 Name = Carl  Maximum_Pulse = 176 
 Performance = 55 
 Observation = 22 
 Name = Kate  Maximum_Pulse = 172 
 Performance = 43 
 Observation = 21 
 Name = Annie  Maximum_Pulse = 172 
 Performance = 48 
 Observation = 20 
 Name = Jack  Maximum_Pulse = 170 
 Performance = 65 
 Observation = 19 
 Name = Ralph  Maximum_Pulse = 164 
 Performance = 56 
 Observation = 18 
 Name = Jackie  Maximum_Pulse = 172 
 Performance = 51 
 Observation = 17 
 Name = Trent  Maximum_Pulse = 188 
 Performance = 47 
 Observation = 16 
 Name = Buffy  Maximum_Pulse = 170 
 Performance = 49 
 Observation = 15 
 Name = Sammy  Maximum_Pulse = 164 
 Performance = 61 
 Observation = 14 
 Name = Harold  Maximum_Pulse = 168 
 Performance = 67 
 Observation = 13 
 Name = Jane  Maximum_Pulse = 168 
 Performance = 57 
 Observation = 12 
 Name = Harriett  Maximum_Pulse = 185 
 Performance = 79 
 Observation = 11 
 Name = Bob  Maximum_Pulse = 168 
 Performance = 54 
 Observation = 10 
 Name = Teresa  Maximum_Pulse = 155 
 Performance = 43 
 Observation = 9 
 Name = Suzanne  Maximum_Pulse = 166 
 Performance = 56 
 Observation = 8 
 Name = Patty  Maximum_Pulse = 188 
 Performance = 64 
 Observation = 7 
 Name = Nancy  Maximum_Pulse = 180 
 Performance = 92 
 Observation = 6 
 Name = Allen  Maximum_Pulse = 185 
 Performance = 72 
 Observation = 5 
 Name = Chris  Maximum_Pulse = 155 
 Performance = 67 
 Observation = 4 
 Name = Mimi  Maximum_Pulse = 168 
 Performance = 83 
 Observation = 3 
 Name = Luanne  Maximum_Pulse = 186 
 Performance = 94 
 Observation = 2 
 Name = Gracie  Maximum_Pulse = 172 
 Performance = 90 
 Observation = 1 
 Name = Donna  Performance = 30 
 RunTime = 14.03 
 Observation = 31 
 Name = William  Performance = 41 
 RunTime = 13.08 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 RunTime = 12.88 
 Observation = 29 
 Name = Steve  Performance = 20 
 RunTime = 12.63 
 Observation = 28 
 Name = Mark  Performance = 56 
 RunTime = 11.95 
 Observation = 27 
 Name = Iris  Performance = 50 
 RunTime = 11.63 
 Observation = 26 
 Name = George  Performance = 45 
 RunTime = 11.5 
 Observation = 25 
 Name = Effie  Performance = 58 
 RunTime = 11.37 
 Observation = 24 
 Name = Don  Performance = 40 
 RunTime = 11.17 
 Observation = 23 
 Name = Carl  Performance = 55 
 RunTime = 11.12 
 Observation = 22 
 Name = Kate  Performance = 43 
 RunTime = 11.08 
 Observation = 21 
 Name = Annie  Performance = 48 
 RunTime = 10.95 
 Observation = 20 
 Name = Jack  Performance = 65 
 RunTime = 10.85 
 Observation = 19 
 Name = Ralph  Performance = 56 
 RunTime = 10.6 
 Observation = 18 
 Name = Jackie  Performance = 51 
 RunTime = 10.5 
 Observation = 17 
 Name = Trent  Performance = 47 
 RunTime = 10.47 
 Observation = 16 
 Name = Buffy  Performance = 49 
 RunTime = 10.33 
 Observation = 15 
 Name = Sammy  Performance = 61 
 RunTime = 10.25 
 Observation = 14 
 Name = Harold  Performance = 67 
 RunTime = 10.13 
 Observation = 13 
 Name = Jane  Performance = 57 
 RunTime = 10.08 
 Observation = 12 
 Name = Harriett  Performance = 79 
 RunTime = 10.07 
 Observation = 11 
 Name = Bob  Performance = 54 
 RunTime = 10 
 Observation = 10 
 Name = Teresa  Performance = 43 
 RunTime = 9.93 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 RunTime = 9.63 
 Observation = 8 
 Name = Patty  Performance = 64 
 RunTime = 9.4 
 Observation = 7 
 Name = Nancy  Performance = 92 
 RunTime = 9.22 
 Observation = 6 
 Name = Allen  Performance = 72 
 RunTime = 8.95 
 Observation = 5 
 Name = Chris  Performance = 67 
 RunTime = 8.92 
 Observation = 4 
 Name = Mimi  Performance = 83 
 RunTime = 8.65 
 Observation = 3 
 Name = Luanne  Performance = 94 
 RunTime = 8.63 
 Observation = 2 
 Name = Gracie  Performance = 90 
 RunTime = 8.17 
 Observation = 1 
 Name = Donna  Performance = 30 
 Age = 45 
 Observation = 31 
 Name = William  Performance = 41 
 Age = 44 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 Age = 54 
 Observation = 29 
 Name = Steve  Performance = 20 
 Age = 57 
 Observation = 28 
 Name = Mark  Performance = 56 
 Age = 40 
 Observation = 27 
 Name = Iris  Performance = 50 
 Age = 47 
 Observation = 26 
 Name = George  Performance = 45 
 Age = 48 
 Observation = 25 
 Name = Effie  Performance = 58 
 Age = 44 
 Observation = 24 
 Name = Don  Performance = 40 
 Age = 54 
 Observation = 23 
 Name = Carl  Performance = 55 
 Age = 45 
 Observation = 22 
 Name = Kate  Performance = 43 
 Age = 51 
 Observation = 21 
 Name = Annie  Performance = 48 
 Age = 51 
 Observation = 20 
 Name = Jack  Performance = 65 
 Age = 43 
 Observation = 19 
 Name = Ralph  Performance = 56 
 Age = 47 
 Observation = 18 
 Name = Jackie  Performance = 51 
 Age = 52 
 Observation = 17 
 Name = Trent  Performance = 47 
 Age = 52 
 Observation = 16 
 Name = Buffy  Performance = 49 
 Age = 54 
 Observation = 15 
 Name = Sammy  Performance = 61 
 Age = 48 
 Observation = 14 
 Name = Harold  Performance = 67 
 Age = 44 
 Observation = 13 
 Name = Jane  Performance = 57 
 Age = 49 
 Observation = 12 
 Name = Harriett  Performance = 79 
 Age = 40 
 Observation = 11 
 Name = Bob  Performance = 54 
 Age = 51 
 Observation = 10 
 Name = Teresa  Performance = 43 
 Age = 57 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 Age = 52 
 Observation = 8 
 Name = Patty  Performance = 64 
 Age = 49 
 Observation = 7 
 Name = Nancy  Performance = 92 
 Age = 38 
 Observation = 6 
 Name = Allen  Performance = 72 
 Age = 49 
 Observation = 5 
 Name = Chris  Performance = 67 
 Age = 50 
 Observation = 4 
 Name = Mimi  Performance = 83 
 Age = 43 
 Observation = 3 
 Name = Luanne  Performance = 94 
 Age = 38 
 Observation = 2 
 Name = Gracie  Performance = 90 
 Age = 42 
 Observation = 1 
 Name = Donna  Performance = 30 
 Weight = 87.66 
 Observation = 31 
 Name = William  Performance = 41 
 Weight = 81.42 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 Weight = 91.63 
 Observation = 29 
 Name = Steve  Performance = 20 
 Weight = 73.37 
 Observation = 28 
 Name = Mark  Performance = 56 
 Weight = 75.98 
 Observation = 27 
 Name = Iris  Performance = 50 
 Weight = 77.45 
 Observation = 26 
 Name = George  Performance = 45 
 Weight = 61.24 
 Observation = 25 
 Name = Effie  Performance = 58 
 Weight = 89.47 
 Observation = 24 
 Name = Don  Performance = 40 
 Weight = 79.38 
 Observation = 23 
 Name = Carl  Performance = 55 
 Weight = 66.45 
 Observation = 22 
 Name = Kate  Performance = 43 
 Weight = 67.25 
 Observation = 21 
 Name = Annie  Performance = 48 
 Weight = 69.63 
 Observation = 20 
 Name = Jack  Performance = 65 
 Weight = 81.19 
 Observation = 19 
 Name = Ralph  Performance = 56 
 Weight = 79.15 
 Observation = 18 
 Name = Jackie  Performance = 51 
 Weight = 82.78 
 Observation = 17 
 Name = Trent  Performance = 47 
 Weight = 73.71 
 Observation = 16 
 Name = Buffy  Performance = 49 
 Weight = 83.12 
 Observation = 15 
 Name = Sammy  Performance = 61 
 Weight = 91.63 
 Observation = 14 
 Name = Harold  Performance = 67 
 Weight = 73.03 
 Observation = 13 
 Name = Jane  Performance = 57 
 Weight = 73.37 
 Observation = 12 
 Name = Harriett  Performance = 79 
 Weight = 75.07 
 Observation = 11 
 Name = Bob  Performance = 54 
 Weight = 77.91 
 Observation = 10 
 Name = Teresa  Performance = 43 
 Weight = 59.08 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 Weight = 76.32 
 Observation = 8 
 Name = Patty  Performance = 64 
 Weight = 76.32 
 Observation = 7 
 Name = Nancy  Performance = 92 
 Weight = 89.02 
 Observation = 6 
 Name = Allen  Performance = 72 
 Weight = 81.42 
 Observation = 5 
 Name = Chris  Performance = 67 
 Weight = 70.87 
 Observation = 4 
 Name = Mimi  Performance = 83 
 Weight = 85.84 
 Observation = 3 
 Name = Luanne  Performance = 94 
 Weight = 81.87 
 Observation = 2 
 Name = Gracie  Performance = 90 
 Weight = 68.15 
 Observation = 1 
 Name = Donna  Performance = 30 
 Run_Pulse = 186 
 Observation = 31 
 Name = William  Performance = 41 
 Run_Pulse = 174 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 Run_Pulse = 168 
 Observation = 29 
 Name = Steve  Performance = 20 
 Run_Pulse = 174 
 Observation = 28 
 Name = Mark  Performance = 56 
 Run_Pulse = 176 
 Observation = 27 
 Name = Iris  Performance = 50 
 Run_Pulse = 176 
 Observation = 26 
 Name = George  Performance = 45 
 Run_Pulse = 170 
 Observation = 25 
 Name = Effie  Performance = 58 
 Run_Pulse = 178 
 Observation = 24 
 Name = Don  Performance = 40 
 Run_Pulse = 156 
 Observation = 23 
 Name = Carl  Performance = 55 
 Run_Pulse = 176 
 Observation = 22 
 Name = Kate  Performance = 43 
 Run_Pulse = 172 
 Observation = 21 
 Name = Annie  Performance = 48 
 Run_Pulse = 168 
 Observation = 20 
 Name = Jack  Performance = 65 
 Run_Pulse = 162 
 Observation = 19 
 Name = Ralph  Performance = 56 
 Run_Pulse = 162 
 Observation = 18 
 Name = Jackie  Performance = 51 
 Run_Pulse = 170 
 Observation = 17 
 Name = Trent  Performance = 47 
 Run_Pulse = 186 
 Observation = 16 
 Name = Buffy  Performance = 49 
 Run_Pulse = 166 
 Observation = 15 
 Name = Sammy  Performance = 61 
 Run_Pulse = 162 
 Observation = 14 
 Name = Harold  Performance = 67 
 Run_Pulse = 168 
 Observation = 13 
 Name = Jane  Performance = 57 
 Run_Pulse = 168 
 Observation = 12 
 Name = Harriett  Performance = 79 
 Run_Pulse = 185 
 Observation = 11 
 Name = Bob  Performance = 54 
 Run_Pulse = 162 
 Observation = 10 
 Name = Teresa  Performance = 43 
 Run_Pulse = 148 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 Run_Pulse = 164 
 Observation = 8 
 Name = Patty  Performance = 64 
 Run_Pulse = 186 
 Observation = 7 
 Name = Nancy  Performance = 92 
 Run_Pulse = 178 
 Observation = 6 
 Name = Allen  Performance = 72 
 Run_Pulse = 180 
 Observation = 5 
 Name = Chris  Performance = 67 
 Run_Pulse = 146 
 Observation = 4 
 Name = Mimi  Performance = 83 
 Run_Pulse = 156 
 Observation = 3 
 Name = Luanne  Performance = 94 
 Run_Pulse = 170 
 Observation = 2 
 Name = Gracie  Performance = 90 
 Run_Pulse = 166 
 Observation = 1 
 Name = Donna  Performance = 30 
 Rest_Pulse = 56 
 Observation = 31 
 Name = William  Performance = 41 
 Rest_Pulse = 63 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 Rest_Pulse = 44 
 Observation = 29 
 Name = Steve  Performance = 20 
 Rest_Pulse = 58 
 Observation = 28 
 Name = Mark  Performance = 56 
 Rest_Pulse = 70 
 Observation = 27 
 Name = Iris  Performance = 50 
 Rest_Pulse = 58 
 Observation = 26 
 Name = George  Performance = 45 
 Rest_Pulse = 52 
 Observation = 25 
 Name = Effie  Performance = 58 
 Rest_Pulse = 62 
 Observation = 24 
 Name = Don  Performance = 40 
 Rest_Pulse = 62 
 Observation = 23 
 Name = Carl  Performance = 55 
 Rest_Pulse = 51 
 Observation = 22 
 Name = Kate  Performance = 43 
 Rest_Pulse = 48 
 Observation = 21 
 Name = Annie  Performance = 48 
 Rest_Pulse = 57 
 Observation = 20 
 Name = Jack  Performance = 65 
 Rest_Pulse = 64 
 Observation = 19 
 Name = Ralph  Performance = 56 
 Rest_Pulse = 47 
 Observation = 18 
 Name = Jackie  Performance = 51 
 Rest_Pulse = 53 
 Observation = 17 
 Name = Trent  Performance = 47 
 Rest_Pulse = 59 
 Observation = 16 
 Name = Buffy  Performance = 49 
 Rest_Pulse = 50 
 Observation = 15 
 Name = Sammy  Performance = 61 
 Rest_Pulse = 48 
 Observation = 14 
 Name = Harold  Performance = 67 
 Rest_Pulse = 45 
 Observation = 13 
 Name = Jane  Performance = 57 
 Rest_Pulse = 67 
 Observation = 12 
 Name = Harriett  Performance = 79 
 Rest_Pulse = 62 
 Observation = 11 
 Name = Bob  Performance = 54 
 Rest_Pulse = 48 
 Observation = 10 
 Name = Teresa  Performance = 43 
 Rest_Pulse = 49 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 Rest_Pulse = 48 
 Observation = 8 
 Name = Patty  Performance = 64 
 Rest_Pulse = 56 
 Observation = 7 
 Name = Nancy  Performance = 92 
 Rest_Pulse = 55 
 Observation = 6 
 Name = Allen  Performance = 72 
 Rest_Pulse = 44 
 Observation = 5 
 Name = Chris  Performance = 67 
 Rest_Pulse = 48 
 Observation = 4 
 Name = Mimi  Performance = 83 
 Rest_Pulse = 45 
 Observation = 3 
 Name = Luanne  Performance = 94 
 Rest_Pulse = 48 
 Observation = 2 
 Name = Gracie  Performance = 90 
 Rest_Pulse = 40 
 Observation = 1 
 Name = Donna  Performance = 30 
 Maximum_Pulse = 192 
 Observation = 31 
 Name = William  Performance = 41 
 Maximum_Pulse = 176 
 Observation = 30 
 Name = Vaughn  Performance = 23 
 Maximum_Pulse = 172 
 Observation = 29 
 Name = Steve  Performance = 20 
 Maximum_Pulse = 176 
 Observation = 28 
 Name = Mark  Performance = 56 
 Maximum_Pulse = 180 
 Observation = 27 
 Name = Iris  Performance = 50 
 Maximum_Pulse = 176 
 Observation = 26 
 Name = George  Performance = 45 
 Maximum_Pulse = 176 
 Observation = 25 
 Name = Effie  Performance = 58 
 Maximum_Pulse = 182 
 Observation = 24 
 Name = Don  Performance = 40 
 Maximum_Pulse = 165 
 Observation = 23 
 Name = Carl  Performance = 55 
 Maximum_Pulse = 176 
 Observation = 22 
 Name = Kate  Performance = 43 
 Maximum_Pulse = 172 
 Observation = 21 
 Name = Annie  Performance = 48 
 Maximum_Pulse = 172 
 Observation = 20 
 Name = Jack  Performance = 65 
 Maximum_Pulse = 170 
 Observation = 19 
 Name = Ralph  Performance = 56 
 Maximum_Pulse = 164 
 Observation = 18 
 Name = Jackie  Performance = 51 
 Maximum_Pulse = 172 
 Observation = 17 
 Name = Trent  Performance = 47 
 Maximum_Pulse = 188 
 Observation = 16 
 Name = Buffy  Performance = 49 
 Maximum_Pulse = 170 
 Observation = 15 
 Name = Sammy  Performance = 61 
 Maximum_Pulse = 164 
 Observation = 14 
 Name = Harold  Performance = 67 
 Maximum_Pulse = 168 
 Observation = 13 
 Name = Jane  Performance = 57 
 Maximum_Pulse = 168 
 Observation = 12 
 Name = Harriett  Performance = 79 
 Maximum_Pulse = 185 
 Observation = 11 
 Name = Bob  Performance = 54 
 Maximum_Pulse = 168 
 Observation = 10 
 Name = Teresa  Performance = 43 
 Maximum_Pulse = 155 
 Observation = 9 
 Name = Suzanne  Performance = 56 
 Maximum_Pulse = 166 
 Observation = 8 
 Name = Patty  Performance = 64 
 Maximum_Pulse = 188 
 Observation = 7 
 Name = Nancy  Performance = 92 
 Maximum_Pulse = 180 
 Observation = 6 
 Name = Allen  Performance = 72 
 Maximum_Pulse = 185 
 Observation = 5 
 Name = Chris  Performance = 67 
 Maximum_Pulse = 155 
 Observation = 4 
 Name = Mimi  Performance = 83 
 Maximum_Pulse = 168 
 Observation = 3 
 Name = Luanne  Performance = 94 
 Maximum_Pulse = 186 
 Observation = 2 
 Name = Gracie  Performance = 90 
 Maximum_Pulse = 172 
 Observation = 1 
 Name = Donna  Performance = 97.5 
 Percent = 9.6774  Performance = 97.5 
 Percent = 9.6774  Performance = 82.5 
 Percent = 6.4516  Performance = 82.5 
 Percent = 6.4516  Performance = 67.5 
 Percent = 19.355  Performance = 67.5 
 Percent = 19.355  Performance = 52.5 
 Percent = 41.935  Performance = 52.5 
 Percent = 41.935  Performance = 37.5 
 Percent = 16.129  Performance = 37.5 
 Percent = 16.129  Performance = 22.5 
 Percent = 6.4516  Performance = 22.5 
 Percent = 6.4516

In [5]:
ods graphics on / imagemap=off;
proc corr data=statdata.fitness 
   plots=(matrix scatter); 
   var RunTime Age Weight Run_Pulse
       Rest_Pulse Maximum_Pulse Performance;
   id name;
   title "Correlation Matrix and Scatter Plot Matrix of Fitness Predictors";
run;
title;


Out[5]:
SAS Output

Correlation Matrix and Scatter Plot Matrix of Fitness Predictors

The CORR Procedure

7 Variables: RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
RunTime 31 10.58613 1.38741 328.17000 8.17000 14.03000
Age 31 47.67742 5.26236 1478 38.00000 57.00000
Weight 31 77.44452 8.32857 2401 59.08000 91.63000
Run_Pulse 31 169.64516 10.25199 5259 146.00000 186.00000
Rest_Pulse 31 53.45161 7.61944 1657 40.00000 70.00000
Maximum_Pulse 31 173.77419 9.16410 5387 155.00000 192.00000
Performance 31 56.64516 18.32584 1756 20.00000 94.00000
Pearson Correlation Coefficients, N = 31
Prob > |r| under H0: Rho=0
  RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse Performance
RunTime
1.00000
 
0.19523
0.2926
0.14351
0.4412
0.31365
0.0858
0.45038
0.0110
0.22610
0.2213
-0.82049
<.0001
Age
0.19523
0.2926
1.00000
 
-0.24050
0.1925
-0.31607
0.0832
-0.15087
0.4178
-0.41490
0.0203
-0.71257
<.0001
Weight
0.14351
0.4412
-0.24050
0.1925
1.00000
 
0.18152
0.3284
0.04397
0.8143
0.24938
0.1761
0.08974
0.6312
Run_Pulse
0.31365
0.0858
-0.31607
0.0832
0.18152
0.3284
1.00000
 
0.35246
0.0518
0.92975
<.0001
-0.02943
0.8751
Rest_Pulse
0.45038
0.0110
-0.15087
0.4178
0.04397
0.8143
0.35246
0.0518
1.00000
 
0.30512
0.0951
-0.22560
0.2224
Maximum_Pulse
0.22610
0.2213
-0.41490
0.0203
0.24938
0.1761
0.92975
<.0001
0.30512
0.0951
1.00000
 
0.09002
0.6301
Performance
-0.82049
<.0001
-0.71257
<.0001
0.08974
0.6312
-0.02943
0.8751
-0.22560
0.2224
0.09002
0.6301
1.00000
 

Correlation Matrix and Scatter Plot Matrix of Fitness Predictors

The CORR Procedure


In [6]:
ods graphics on;
title "Computing Pearson Correlation Coefficients";
proc corr data=exercise nosimple rank
/*plots = matrix(nvar=all);*/
 plots(only)=scatter (ellipse = confidence);
/*plots(only) = scatter(ellipse = none);*/
var Rest_Pulse Max_Pulse Run_Pulse Age;
with Pushups;      /*****/
run;
ods graphics off;


Out[6]:

66   ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
67
68 ods graphics on;
69 title "Computing Pearson Correlation Coefficients";
70 proc corr data=exercise nosimple rank
ERROR: File WORK.EXERCISE.DATA does not exist.
71 /*plots = matrix(nvar=all);*/
72 plots(only)=scatter (ellipse = confidence);
73 /*plots(only) = scatter(ellipse = none);*/
74 var Rest_Pulse Max_Pulse Run_Pulse Age;
75 with Pushups; /*****/
76 run;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE CORR used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

77 ods graphics off;
78 ods html5 close;ods listing;

79

Simple Regression Model

See Ramon Littell, Walter Stroup, Rudolf Freund-SAS for Linear Models, Fourth Edition-SAS Publishing (2002) P11

The CLM option yields a confidence interval for the subpopulation mean, and the CLI option yields a prediction interval for a value to be drawn at random from the subpopulation. The CLI limits are always wider than the CLM limits, because the CLM limits accommodate only variability in $\widehat{y}$, whereas the CLI limits accommodate variability in $\widehat{y}$ and variability in the future value of y. This is true even though $\widehat{y}$ is used as an estimate of the subpopulation mean as well as a predictor of the future value.

where NOINT is the option that specifies that no intercept be included. In other words, the fitted regression plane is forced to pass through the origin.

Corresponding complications arise regarding the R-square statistic with no-intercept models. Note that R-Square=0.9829 for the no-intercept model in Output 2.10 is greater than R-Square=0.9373 for the model in Output 2.6, although the latter has two more parameters than the former. This seems contrary to the general phenomenon that adding terms to a model causes the R-square to increase. This seeming contradiction occurs because the denominator of the Rsquare is the Uncorrected Total SS when the NOINT option is used. This is the reason for the message that R-square is redefined at the top of Output 2.10. It is, therefore, not meaningful to compare an R-square for a model that contains an intercept with an R-square for a model that does not contain an intercept


In [7]:
proc reg data=statdata.fitness;
   model Oxygen_Consumption = RunTime / p cli clm influence r xpx i;
   id name RunTime;
   title 'Predicting Oxygen_Consumption from RunTime';
run;
quit;
title;


Out[7]:
SAS Output

Predicting Oxygen_Consumption from RunTime

The REG Procedure

Model: MODEL1

Model Crossproducts X'X X'Y Y'Y
Variable Intercept RunTime Oxygen_Consumption
Intercept 31 328.17 1468.65
RunTime 328.17 3531.7975 15356.1247
Oxygen_Consumption 1468.65 15356.1247 70430.0327

Predicting Oxygen_Consumption from RunTime

The REG Procedure

Model: MODEL1

Dependent Variable: Oxygen_Consumption

Number of Observations Read 31
Number of Observations Used 31
X'X Inverse, Parameter Estimates, and SSE
Variable Intercept RunTime Oxygen_Consumption
Intercept 1.9728798928 -0.183317417 82.424942238
RunTime -0.183317417 0.0173167563 -3.310854768
Oxygen_Consumption 82.424942238 -3.310854768 218.53997081
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 1 633.01458 633.01458 84.00 <.0001
Error 29 218.53997 7.53586    
Corrected Total 30 851.55455      
Root MSE 2.74515 R-Square 0.7434
Dependent Mean 47.37581 Adj R-Sq 0.7345
Coeff Var 5.79442    
Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 82.42494 3.85582 21.38 <.0001
RunTime 1 -3.31085 0.36124 -9.17 <.0001

Predicting Oxygen_Consumption from RunTime

The REG Procedure

Model: MODEL1

Dependent Variable: Oxygen_Consumption

Output Statistics
Obs Name RunTime Dependent
Variable
Predicted
Value
Std
Error
Mean
Predict


  Residual Std Error
Residual
Student
Residual
Cook's D RStudent Hat Diag
H
Cov
Ratio
DFFITS DFBETAS
95% CL Mean 95% CL Predict Intercept RunTime
1 Donna 8.17 59.6 55.3753 1.0024 53.3250 57.4255 49.3982 61.3524 4.1947 2.556 1.641 0.207 1.6934 0.1333 1.0185 0.6643 0.6154 -0.5784
2 Gracie 8.63 60.1 53.8523 0.8616 52.0900 55.6145 47.9677 59.7368 6.2077 2.606 2.382 0.310 2.6094 0.0985 0.7700 0.8626 0.7647 -0.7074
3 Luanne 8.65 54.3 53.7860 0.8557 52.0359 55.5362 47.9051 59.6670 0.5140 2.608 0.197 0.002 0.1937 0.0972 1.1850 0.0636 0.0562 -0.0520
4 Mimi 8.92 54.6 52.8921 0.7780 51.3008 54.4834 47.0565 58.7277 1.7379 2.633 0.660 0.019 0.6536 0.0803 1.1316 0.1932 0.1639 -0.1494
5 Chris 8.95 49.2 52.7928 0.7697 51.2186 54.3670 46.9618 58.6238 -3.6328 2.635 -1.379 0.081 -1.4014 0.0786 1.0166 -0.4093 -0.3453 0.3143
6 Allen 9.22 49.9 51.8989 0.6976 50.4721 53.3256 46.1059 57.6918 -2.0289 2.655 -0.764 0.020 -0.7585 0.0646 1.1010 -0.1993 -0.1578 0.1410
7 Nancy 9.40 48.7 51.3029 0.6532 49.9669 52.6389 45.5317 57.0741 -2.6329 2.666 -0.987 0.029 -0.9870 0.0566 1.0619 -0.2418 -0.1807 0.1586
8 Patty 9.63 45.4 50.5414 0.6020 49.3102 51.7726 44.7935 56.2893 -5.1014 2.678 -1.905 0.092 -2.0009 0.0481 0.8626 -0.4497 -0.3030 0.2580
9 Suzanne 9.93 50.6 49.5482 0.5471 48.4293 50.6670 43.8233 55.2730 1.0018 2.690 0.372 0.003 0.3668 0.0397 1.1064 0.0746 0.0407 -0.0323
10 Teresa 10.00 46.7 49.3164 0.5366 48.2190 50.4138 43.5957 55.0371 -2.6464 2.692 -0.983 0.019 -0.9824 0.0382 1.0422 -0.1958 -0.0996 0.0773
11 Bob 10.07 45.3 49.0846 0.5271 48.0066 50.1627 43.3676 54.8017 -3.7746 2.694 -1.401 0.038 -1.4258 0.0369 0.9681 -0.2790 -0.1312 0.0987
12 Harriett 10.08 50.4 49.0515 0.5259 47.9760 50.1270 43.3350 54.7681 1.3385 2.694 0.497 0.005 0.4902 0.0367 1.0947 0.0957 0.0445 -0.0333
13 Jane 10.13 50.5 48.8860 0.5198 47.8228 49.9492 43.1717 54.6002 1.6540 2.695 0.614 0.007 0.6069 0.0359 1.0839 0.1170 0.0510 -0.0371
14 Harold 10.25 46.8 48.4887 0.5078 47.4502 49.5272 42.7790 54.1984 -1.7187 2.698 -0.637 0.007 -0.6304 0.0342 1.0798 -0.1187 -0.0429 0.0284
15 Sammy 10.33 51.9 48.2238 0.5017 47.1978 49.2498 42.5164 53.9313 3.6262 2.699 1.344 0.031 1.3633 0.0334 0.9759 0.2534 0.0782 -0.0467
16 Buffy 10.47 45.8 47.7603 0.4948 46.7483 48.7723 42.0553 53.4652 -1.9703 2.700 -0.730 0.009 -0.7237 0.0325 1.0684 -0.1326 -0.0280 0.0112
17 Trent 10.50 47.5 47.6610 0.4940 46.6506 48.6714 41.9563 53.3656 -0.1910 2.700 -0.071 0.000 -0.0695 0.0324 1.1082 -0.0127 -0.0024 0.0008
18 Jackie 10.60 47.3 47.3299 0.4931 46.3214 48.3383 41.6256 53.0342 -0.0599 2.701 -0.022 0.000 -0.0218 0.0323 1.1084 -0.0040 -0.0005 -0.0000
19 Ralph 10.85 49.1 46.5022 0.5022 45.4751 47.5292 40.7945 52.2098 2.5878 2.699 0.959 0.016 0.9575 0.0335 1.0406 0.1782 -0.0112 0.0338
20 Jack 10.95 40.8 46.1711 0.5103 45.1275 47.2147 40.4604 51.8817 -5.3311 2.697 -1.976 0.070 -2.0878 0.0346 0.8319 -0.3950 0.0521 -0.1017
21 Annie 11.08 45.1 45.7407 0.5243 44.6683 46.8130 40.0247 51.4566 -0.6207 2.695 -0.230 0.001 -0.2265 0.0365 1.1093 -0.0441 0.0096 -0.0150
22 Kate 11.12 44.8 45.6082 0.5294 44.5255 46.6910 39.8903 51.3262 -0.8582 2.694 -0.319 0.002 -0.3136 0.0372 1.1064 -0.0616 0.0149 -0.0225
23 Carl 11.17 46.1 45.4427 0.5363 44.3459 46.5395 39.7221 51.1633 0.6373 2.692 0.237 0.001 0.2328 0.0382 1.1110 0.0464 -0.0126 0.0182
24 Don 11.37 44.6 44.7805 0.5686 43.6177 45.9434 39.0469 50.5142 -0.1705 2.686 -0.063 0.000 -0.0624 0.0429 1.1205 -0.0132 0.0051 -0.0066
25 Effie 11.50 47.9 44.3501 0.5934 43.1366 45.5637 38.6060 50.0942 3.5699 2.680 1.332 0.043 1.3507 0.0467 0.9918 0.2990 -0.1332 0.1664
26 George 11.63 44.8 43.9197 0.6207 42.6502 45.1892 38.1635 49.6759 0.8903 2.674 0.333 0.003 0.3278 0.0511 1.1219 0.0761 -0.0381 0.0462
27 Iris 11.95 45.7 42.8602 0.6970 41.4347 44.2858 37.0676 48.6528 2.8198 2.655 1.062 0.039 1.0644 0.0645 1.0592 0.2794 -0.1706 0.1975
28 Mark 12.63 39.4 40.6088 0.8878 38.7930 42.4246 34.7081 46.5096 -1.1988 2.598 -0.462 0.012 -0.4552 0.1046 1.1805 -0.1556 0.1173 -0.1294
29 Steve 12.88 39.2 39.7811 0.9642 37.8091 41.7532 33.8304 45.7319 -0.5811 2.570 -0.226 0.004 -0.2224 0.1234 1.2194 -0.0834 0.0656 -0.0717
30 Vaughn 13.08 39.4 39.1190 1.0270 37.0185 41.2194 33.1245 45.1135 0.3210 2.546 0.126 0.001 0.1239 0.1400 1.2459 0.0500 -0.0404 0.0439
31 William 14.03 37.4 35.9736 1.3382 33.2367 38.7106 29.7276 42.2197 1.4164 2.397 0.591 0.054 0.5842 0.2376 1.3734 0.3261 -0.2853 0.3032
Sum of Residuals 0
Sum of Squared Residuals 218.53997
Predicted Residual SS (PRESS) 250.97516

The Model Sum of Squares is 633.01. This is the amount of variability that the model explains.

The Error Sum of Squares is 218.54. This is the amount of variability that the model does not explain.

The Total Sum of Squares is 851.55, which is the total amount of variability in the response.

The Mean Square column indicates the ratio of the sum of squares and the degrees of freedom.The mean square model is 633.01. This is calculated by dividing the model sum of squares by the model DF, which gives us the average sum of squares for the model. The mean square error is 7.54, which is an estimate of the population variance. This is calculated by dividing the error sum of squares by the error DF, which gives us the average sum of squares for the error.

The Root MSE is 2.75. This is the square root of the mean square error in the Analysis of Variance table. The Root MSE is a measure of the standard deviation of Oxygen_Consumption at each value of RunTime.

The Dependent Mean is 47.38, which is the average of Oxygen_Consumption for all 31 subjects.

The Coefficient of Variation is 5.79. This is the size of the standard deviation relative to the mean.

The R-square value is .743, which is calculated by dividing the mean square for the model by the total sum of squares. The R-square value is between 0 and 1 and measures the proportion of variation observed in the response that the regression line explains.

Mean Square Between and Mean Square Within are used to calculate the F-ratio:

If you create a 95% prediction interval, the interpretation is that you are 95% confident that your interval contains the new observation.

For a given set of data, why is a prediction interval wider than a confidence interval? A prediction interval is wider than a confidence interval because single observations have more variability than sample means.

The difference between a prediction interval and a confidence interval is the standard error.

The standard error for a confidence interval on the mean takes into account the uncertainty due to sampling. The line you computed from your sample will be different from the line that would have been computed if you had the entire population, the standard error takes this uncertainty into account.

The standard error for a prediction interval on an individual observation takes into account the uncertainty due to sampling like above, but also takes into account the variability of the individuals around the predicted mean. The standard error for the prediction interval will be wider than for the confidence interval and hence the prediction interval will be wider than the confidence interval.

Storing Parameter Estimates and Scoring

First, create a data set containing the values of the independent variable for which you want to make predictions. Concatenate the new data set with the original data set. Fit a simple linear regression model to the new data set and specify the P option in the MODEL statement. Because the concatenated observations contain missing values for the response variable, PROC REG doesn't include these observations when fitting the regression model. However, PROC REG does produce predicted values for these observations.

When you use a model to predict future values of the response variable given certain values of the predictor variable, you must stay within the range of values for the predictor variable used to create the model. For example, in the original Fitness data set, values of RunTime range from a little over 8 minutes to a little over 14 minutes. Based on that data, you shouldn't try to predict what Oxygen_Consumption would be for a RunTime value outside that range. The relationship between the predictor variable and the response variable might be different beyond the range of the data.

PROC SCORE DATA=SAS-data-set 
   SCORE=SAS-data-set 
   OUT=SAS-data-set 
   TYPE=name 
   <options>;
VAR variable(s);
RUN;
QUIT;

In the PROC SCORE statement, the DATA= option specifies the data set containing the observations to score, which is Need_Predictions. The SCORE= option specifies the data set containing the parameter estimates, which is Estimates. The OUT= option specifies the data set that PROC SCORE creates. Let's call this data set Scored. Finally, the TYPE= option tells PROC SCORE what type of data the SCORE= data set contains. In this case, specifying TYPE=PARMS tells SAS to use the parameter estimates in the Estimates data set. The VAR statement specifies the numeric variables to use in computing scores. These variables must appear in both the DATA= and SCORE= input data sets. If you don't specify a VAR statement, PROC SCORE uses all the numeric variables in the SCORE= data set. So it's important to specify a VAR statement with PROC SCORE, because you rarely use all the numeric variables in your data set to compute scores. We'll use RunTime. Next, let's see this process in action.


In [8]:
data need_predictions;
   input RunTime @@;
   datalines;
9 10 11 12 13 14 15
;
run;

proc reg data=statdata.fitness noprint outest=estimates; 
   model Oxygen_Consumption=RunTime;
run;
quit;
 
proc print data=estimates;
   title "OUTEST= Data Set from PROC REG";
run;
title;

proc print data = need_predictions;
 title "need_predictions Data Set";
run;
  
proc score data=need_predictions /*dataset to score*/ 
           score=estimates  /*dataset containing the parmeter estimates*/
           out=scored       /*the output dataset*/
           type=parms;      /*tells PROC SCORE what type of data the SCORE= data set contains.*/
   var RunTime; 
   /*The VAR statement specifies the numeric variables to use in computing scores. 
   These variables must appear in both the DATA= and SCORE= input data sets*/ 
run;
 
proc print data=Scored;
   title "Scored New Observations";
run;
title;


Out[8]:
SAS Output

OUTEST= Data Set from PROC REG

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept RunTime Oxygen_Consumption
1 MODEL1 PARMS Oxygen_Consumption 2.74515 82.4249 -3.31085 -1

need_predictions Data Set

Obs RunTime
1 9
2 10
3 11
4 12
5 13
6 14
7 15

Scored New Observations

Obs RunTime MODEL1
1 9 52.6272
2 10 49.3164
3 11 46.0055
4 12 42.6947
5 13 39.3838
6 14 36.0730
7 15 32.7621

In [9]:
proc reg data=statdata.bodyfat2 outest=estimates;
   model PctBodyFat2=Weight;
   title "Regression of % Body Fat on Weight";
run;

data toscore;
   input Weight @@;
   datalines;
125 150 175 200 225
;
run;

proc score data=toscore score=estimates
     out=scored type=parms;
   var Weight;
run;

proc print data=scored;
   title "Predicted % Body Fat from Weight 125 150 175 200 225";
run;
title;


Out[9]:
SAS Output

Regression of % Body Fat on Weight

The REG Procedure

Model: MODEL1

Dependent Variable: PctBodyFat2

Number of Observations Read 252
Number of Observations Used 252
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 1 6593.01614 6593.01614 150.03 <.0001
Error 250 10986 43.94389    
Corrected Total 251 17579      
Root MSE 6.62902 R-Square 0.3751
Dependent Mean 19.15079 Adj R-Sq 0.3726
Coeff Var 34.61485    
Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 -12.05158 2.58139 -4.67 <.0001
Weight 1 0.17439 0.01424 12.25 <.0001

Regression of % Body Fat on Weight

The REG Procedure

Model: MODEL1

Dependent Variable: PctBodyFat2


Predicted % Body Fat from Weight 125 150 175 200 225

Obs Weight MODEL1
1 125 9.7470
2 150 14.1067
3 175 18.4664
4 200 22.8261
5 225 27.1859

The PLM Procedure

The PLM procedure performs post-fitting statistical analyses and plotting for the contents of a SAS item store that were previously created with the STORE statement in some other SAS/STAT procedure.

The statements that are available in the PLM procedure are designed to reveal the contents of the source item store via the Output Delivery System (ODS) and to perform post-fitting tasks.

The use of item stores and PROC PLM enables you to separate common post-processing tasks, such as testing for treatment differences and predicting new observations under a fitted model, from the process of model building and fitting. A numerically expensive model fitting technique can be applied once to produce a source item store. The PLM procedure can then be called multiple times, and the results of the fitted model are analyzed without incurring the model fitting expenditure again.

Selected PROC PLM option:

  • RESTORE specifies the source item store for processing.
  • Selected PROC PLM procedure statements:
  • EFFECTPLOT produces a display of the fitted model and provides options for changing and enhancing the displays.
  • LSMEANS computes and compares least squares means (LS-means) of fixed effects.
  • LSMESTIMATE provides custom hypothesis tests among least squares means.
  • SHOW uses the Output Delivery System to display contents of the item store. This statement is useful for verifying that the contents of the item store apply to the analysis and for generating ODS tables.
  • SLICE provides a general mechanism for performing a partitioned analysis of the LS-means for an interaction. This analysis is also known as an analysis of simple effects. The SLICE statement uses the same options as the LSMEANS statement.
  • WHERE is used in the PLM procedure when the item store contains BY-variable information and you want to apply the PROC PLM statements to only a subset of the BY groups.
PROC PLM RESTORE=item-store-specification<options>;
    EFFECTPLOT <plot-type <(plot-definition options)>> 
          </ options>;
    LSMEANS <model-effects > </ options>;
    LSMESTIMATE model-effect <'label'> values 
      <divisor=n><,...<'label'> values
      <divisor=n>> </ options>;
SHOW options;
SLICE model-effect </ options>;
WHERE expression ;
RUN;

Multiple Regression Model


In [10]:
proc sql outobs = 20; 
select *
from statdata.ameshousing3 ;
run;

proc univariate data=statdata.ameshousing3;
var SalePrice Basement_Area Lot_Area;
run;


Out[10]:
SAS Output
PID Lot size in square feet Style of dwelling Overall material and finish of the house Overall condition of the house Original construction year Heating quality and condition Presence of central air conditioning Above grade (ground) living area square feet Bedrooms above grade Number of fireplaces Size of garage in square feet Month Sold (MM) Year Sold (YYYY) Sale price in dollars Basement area in square feet Number of full bathrooms Number of half bathrooms Total number of bathrooms (half bathrooms counted 10%) Total area of decks and porches in square feet Age of house when sold, in years Season when house sold Garage attached or detached Foundation Type Masonry veneer or not Regular or irregular lot shape Style of dwelling Overall material and finish of the house Overall condition of the house Natural log of the sale price Sale Price > $175,000 score
0527127150 4920 1Story 8 5 2001 Ex Y 1338 2 0 582 4 2010 213500 1338 3 0 3 0 9 2 Attached Concrete/Slab N Regular 1Story 6 5 12.271392112 1 .
0527145080 5005 1Story 8 5 1992 Ex Y 1280 2 0 506 1 2010 191500 1280 2 0 2 226 18 1 Attached Concrete/Slab N Irregular 1Story 6 5 12.162643088 1 .
0527425090 10500 1Story 4 5 1971 TA Y 864 3 1 0 4 2010 115000 864 1 0 1 0 39 2 NA Cinder Block N Regular 1Story 4 5 11.652687407 0 .
0528228285 3203 1Story 7 5 2006 Ex Y 1145 2 0 437 1 2010 160000 1145 2 0 2 216 4 1 Attached Concrete/Slab Y Regular 1Story 6 5 11.982929094 0 .
0528250100 7750 SLvl 7 5 2000 Ex Y 1430 3 1 400 4 2010 180000 384 2 1 2.1 180 10 2 Attached Concrete/Slab N Irregular SLvl 6 5 12.10071213 1 .
0531452050 7175 1Story 6 5 1984 TA Y 752 2 0 264 2 2010 125000 744 2 0 2 443 26 1 Attached Cinder Block N Regular 1Story 6 5 11.736069016 0 .
0533253210 3880 1Story 8 6 1978 TA Y 1226 1 1 484 1 2010 206000 1226 2 0 2 301 32 1 Attached Cinder Block N Irregular 1Story 6 6 12.235631448 1 .
0534401110 9900 1Story 5 5 1966 Gd Y 1209 3 0 504 4 2010 159000 1209 2 0 2 0 44 2 Attached Concrete/Slab N Regular 1Story 5 5 11.976659481 0 .
0534403410 14112 SLvl 5 7 1964 TA Y 1152 3 1 484 4 2010 180500 1152 2 0 2 227 46 2 Attached Concrete/Slab Y Irregular SLvl 5 6 12.103486057 1 .
0534430080 9717 1Story 5 6 1950 Gd Y 1078 2 0 240 4 2010 142125 1078 2 0 2 366 60 2 Attached Cinder Block N Regular 1Story 5 6 11.864462231 0 .
0534475100 9920 1Story 5 5 1954 TA Y 1063 3 0 280 2 2010 128000 1056 2 0 2 0 56 1 Attached Cinder Block Y Regular 1Story 5 5 11.759785543 0 .
0534479320 7800 1Story 5 6 1954 Gd Y 1268 2 1 244 3 2010 132000 1268 1 0 1 98 56 2 Attached Concrete/Slab Y Regular 1Story 5 6 11.790557202 0 .
0535101020 11380 SFoyer 6 8 1966 Gd Y 1128 2 1 315 1 2010 178000 1080 2 0 2 238 44 1 Attached Cinder Block Y Irregular SFoyer 6 6 12.089538829 1 .
0535302080 10950 1Story 5 7 1952 TA Y 1064 2 0 318 5 2010 135000 864 1 1 1.1 0 58 2 Detached Cinder Block N Regular 1Story 5 6 11.813030057 0 .
0535453070 7500 1Story 5 7 1959 Ex Y 1246 3 0 305 5 2010 154000 1246 2 1 2.1 218 51 2 Attached Cinder Block N Regular 1Story 5 6 11.944707881 0 .
0535456110 7200 1Story 5 7 1951 TA Y 900 3 0 576 5 2010 134800 900 1 1 1.1 254 59 2 Detached Cinder Block N Regular 1Story 5 6 11.811547477 0 .
0535476350 9760 1Story 6 7 1963 TA Y 1395 2 1 440 5 2010 192000 1395 2 0 2 897 47 2 Attached Cinder Block Y Regular 1Story 6 6 12.165250651 1 .
0902125160 4608 1Story 4 6 1945 TA Y 747 2 0 220 6 2010 80000 747 1 0 1 0 65 3 Attached Cinder Block N Regular 1Story 4 6 11.289781914 0 .
0902206130 6900 1.5Fin 6 7 1938 Gd Y 1251 3 0 240 1 2010 119000 827 1 0 1 0 72 1 Detached Concrete/Slab N Regular 1.5Fin 6 6 11.686878772 0 .
0903232190 6240 1.5Fin 5 7 1936 Gd Y 1040 2 0 624 5 2010 123900 528 1 0 1 306 74 2 Detached Cinder Block N Regular 1.5Fin 5 6 11.727230068 0 .

The UNIVARIATE Procedure

Variable: SalePrice (Sale price in dollars)

Moments
N 300 Sum Weights 300
Mean 137524.867 Sum Observations 41257460
Std Deviation 37622.6431 Variance 1415463276
Skewness 0.29726388 Kurtosis 0.72287774
Uncorrected SS 6.09715E12 Corrected SS 4.23224E11
Coeff Variation 27.3569748 Std Error Mean 2172.14431
Basic Statistical Measures
Location Variability
Mean 137524.9 Std Deviation 37623
Median 135000.0 Variance 1415463276
Mode 110000.0 Range 255000
    Interquartile Range 45475

Note: The mode displayed is the smallest of 2 modes with a count of 6.

Tests for Location: Mu0=0
Test Statistic p Value
Student's t t 63.31295 Pr > |t| <.0001
Sign M 150 Pr >= |M| <.0001
Signed Rank S 22575 Pr >= |S| <.0001
Quantiles (Definition 5)
Level Quantile
100% Max 290000
99% 227500
95% 207000
90% 187300
75% Q3 159475
50% Median 135000
25% Q1 114000
10% 91150
5% 80000
1% 48500
0% Min 35000
Extreme Observations
Lowest Highest
Value Obs Value Obs
35000 294 218000 184
39300 190 220000 106
45000 77 235000 151
52000 130 245000 54
59000 70 290000 123

The UNIVARIATE Procedure

Variable: Basement_Area (Basement area in square feet)

Moments
N 300 Sum Weights 300
Mean 882.31 Sum Observations 264693
Std Deviation 359.783966 Variance 129444.502
Skewness -0.5476589 Kurtosis 0.13741949
Uncorrected SS 272245187 Corrected SS 38703906.2
Coeff Variation 40.7775007 Std Error Mean 20.772137
Basic Statistical Measures
Location Variability
Mean 882.3100 Std Deviation 359.78397
Median 912.0000 Variance 129445
Mode 0.0000 Range 1645
    Interquartile Range 471.50000
Tests for Location: Mu0=0
Test Statistic p Value
Student's t t 42.47565 Pr > |t| <.0001
Sign M 142 Pr >= |M| <.0001
Signed Rank S 20235 Pr >= |S| <.0001
Quantiles (Definition 5)
Level Quantile
100% Max 1645.0
99% 1488.0
95% 1430.5
90% 1337.5
75% Q3 1143.5
50% Median 912.0
25% Q1 672.0
10% 406.0
5% 0.0
1% 0.0
0% Min 0.0
Extreme Observations
Lowest Highest
Value Obs Value Obs
0 285 1486 95
0 269 1487 249
0 268 1489 222
0 233 1602 151
0 219 1645 105

The UNIVARIATE Procedure

Variable: Lot_Area (Lot size in square feet)

Moments
N 300 Sum Weights 300
Mean 8294.13667 Sum Observations 2488241
Std Deviation 3323.78787 Variance 11047565.8
Skewness 1.00934511 Kurtosis 4.57577642
Uncorrected SS 2.3941E10 Corrected SS 3303222171
Coeff Variation 40.0739462 Std Error Mean 191.898982
Basic Statistical Measures
Location Variability
Mean 8294.137 Std Deviation 3324
Median 8265.000 Variance 11047566
Mode 7200.000 Range 24647
    Interquartile Range 3816
Tests for Location: Mu0=0
Test Statistic p Value
Student's t t 43.22137 Pr > |t| <.0001
Sign M 150 Pr >= |M| <.0001
Signed Rank S 22575 Pr >= |S| <.0001
Quantiles (Definition 5)
Level Quantile
100% Max 26142.0
99% 18631.5
95% 13109.0
90% 12036.0
75% Q3 10110.0
50% Median 8265.0
25% Q1 6294.5
10% 4252.0
5% 2956.5
1% 1638.0
0% Min 1495.0
Extreme Observations
Lowest Highest
Value Obs Value Obs
1495 241 16285 91
1533 110 17755 292
1596 173 19508 120
1680 252 25339 218
1680 251 26142 38

Run the same model in PROC GLM. When you run a linear regression model with only two predictor variables, the output includes a contour fit plot by default. We specify CONTOURFIT to tell SAS to overlay the contour plot with a scatter plot of the observed data.

Here is the contour fit plot with the overlaid scatter plot that we requested. We can use this plot to see how well your model predicts observed values. The plot shows predicted values of SalePrice as gradations of the background color from blue, representing low values, to red, representing high values. The dots, which are similarly colored, represent the actual data. Observations that are perfectly fit would show the same color within the circle as outside the circle. The lines on the graph help you read the actual predictions at even intervals.

For example, this point near the upper-right represents an observation with a basement area of about 1,500 square feet, a lot size of about 17,000 square feet, and a predicted value of over \$180,000 for sale price. However, the dot’s color shows that its observed sale price is actually closer to about \$160,000.


In [11]:
ods graphics on;

proc reg data=statdata.ameshousing3 ;
    model SalePrice=Basement_Area Lot_Area;
    title "Model with Basement Area and Lot Area";
run;
quit;

proc glm data=statdata.ameshousing3 
         plots(only)=(contourfit);
    model SalePrice=Basement_Area Lot_Area;
    contrast 'Basement_Area=0' Basement_Area 1; 
    contrast 'Basement_Area=Lot_Area' Basement_Area 1 Lot_Area -1;
    contrast 'Basement_Area=Lot_Area=0' Basement_Area 1,  Lot_Area 1;
    
    /*CONTRAST statements can be used to test hypotheses about
    any linear combination of parameters in the model.*/
    
   estimate 'Basement_Area=0' Basement_Area 1; 
   estimate 'Basement_Area=Lot_Area' Basement_Area 1 Lot_Area -1; 
    
    /*The ESTIMATE statement is used in essentially the same way as the CONTRAST statement. 
But instead of F-tests for linear combinations, you get estimates of them along with standard errors.
However, the ESTIMATE statement can estimate only one linear combination at a time, whereas the
CONTRAST statement could be used to test two or more linear combinations simultaneously */
    
    store out=multiple;
    title "Model with Basement Area and Gross Living Area";
run;
quit;

proc plm restore=multiple plots=all;
    effectplot contour (y=Basement_Area x=Lot_Area);
    effectplot slicefit(x=Lot_Area sliceby=Basement_Area=250 to 1000 by 250);
run; 

title;


Out[11]:
SAS Output

Model with Basement Area and Lot Area

The REG Procedure

Model: MODEL1

Dependent Variable: SalePrice Sale price in dollars

Number of Observations Read 300
Number of Observations Used 300
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 2 2.032206E11 1.016103E11 137.17 <.0001
Error 297 2.200029E11 740750509    
Corrected Total 299 4.232235E11      
Root MSE 27217 R-Square 0.4802
Dependent Mean 137525 Adj R-Sq 0.4767
Coeff Var 19.79041    
Parameter Estimates
Variable Label DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept Intercept 1 69016 5129.52179 13.45 <.0001
Basement_Area Basement area in square feet 1 70.08680 4.54618 15.42 <.0001
Lot_Area Lot size in square feet 1 0.80430 0.49210 1.63 0.1032

Model with Basement Area and Lot Area

The REG Procedure

Model: MODEL1

Dependent Variable: SalePrice Sale price in dollars


Model with Basement Area and Gross Living Area

The GLM Procedure

Number of Observations Read 300
Number of Observations Used 300

Model with Basement Area and Gross Living Area

The GLM Procedure

Dependent Variable: SalePrice Sale price in dollars

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 203220618262 101610309131 137.17 <.0001
Error 297 220002901249 740750509.26    
Corrected Total 299 423223519511      
R-Square Coeff Var Root MSE SalePrice Mean
0.480173 19.79041 27216.73 137524.9
Source DF Type I SS Mean Square F Value Pr > F
Basement_Area 1 201241844480 201241844480 271.67 <.0001
Lot_Area 1 1978773781.7 1978773781.7 2.67 0.1032
Source DF Type III SS Mean Square F Value Pr > F
Basement_Area 1 176055907089 176055907089 237.67 <.0001
Lot_Area 1 1978773781.7 1978773781.7 2.67 0.1032
Contrast DF Contrast SS Mean Square F Value Pr > F
Basement_Area=0 1 176055907089 176055907089 237.67 <.0001
Basement_Area=Lot_Area 1 160693644810 160693644810 216.93 <.0001
Basement_Area=Lot_Area=0 2 203220618262 101610309131 137.17 <.0001
Parameter Estimate Standard
Error
t Value Pr > |t|
Basement_Area=0 70.0868031 4.54618316 15.42 <.0001
Basement_Area=Lot_Area 69.2825041 4.70392301 14.73 <.0001
Parameter Estimate Standard
Error
t Value Pr > |t|
Intercept 69015.61360 5129.521790 13.45 <.0001
Basement_Area 70.08680 4.546183 15.42 <.0001
Lot_Area 0.80430 0.492102 1.63 0.1032

Model with Basement Area and Gross Living Area

The PLM Procedure

Store Information
Item Store WORK.MULTIPLE
Data Set Created From STATDATA.AMESHOUSING3
Created By PROC GLM
Date Created 03JUL17:23:17:52
Response Variable SalePrice
Model Effects Intercept Basement_Area Lot_Area

Model Selection

Automatic Model Selection

In the MODEL statement, following a forward slash, you add the SELECTION= option to specify the method used to select the model. The default is NONE, which in this case would calculate the full regression model, because you specified all the variables in the MODEL statement. To calculate the all-possible regression model instead, you specify the CP, RSQUARE, or ADJRSQ statistics as the SELECTION= value. Here all three are specified. The first statistic that you list here determines the sorting order in the output.

Here's a question: For this PROC REG step, how are the models sorted? Specifying CP as the first statistic sorts the models by the value of CP. To produce only a specific number of models, you can specify the BEST= option in the MODEL statement. For example, BEST=20 displays the 20 best models based on your sorting statistic, which in this case is CP.

Finally, you can add an optional label to the MODEL statement to label your output. For this all-possible regression model, let's add the label ALL_REG. Notice that the label must end in a colon.

Each star in the Cp plot represents the best model for a given number of parameters


In [12]:
ods graphics / imagemap=on;
proc reg data=statdata.fitness plots(only)=(cp);
   ALL_REG: model Oxygen_Consumption= 
   Performance RunTime Age Weight
   Run_Pulse Rest_Pulse Maximum_Pulse
   / selection=cp rsquare adjrsq best=20;
title 'Best Models Using All-Regression Option';
run;
quit;
title;


Out[12]:
SAS Output

Best Models Using All-Regression Option

The REG Procedure

Model: ALL_REG

Dependent Variable: Oxygen_Consumption

C(p) Selection Method

Number of Observations Read 31
Number of Observations Used 31

Model
Index
Number in
Model
C(p) R-Square Adjusted
R-Square
Variables in Model
1 4 4.0004 0.8355 0.8102 RunTime Age Run_Pulse Maximum_Pulse
2 5 4.2598 0.8469 0.8163 RunTime Age Weight Run_Pulse Maximum_Pulse
3 5 4.7158 0.8439 0.8127 Performance RunTime Weight Run_Pulse Maximum_Pulse
4 5 4.7168 0.8439 0.8127 Performance RunTime Age Run_Pulse Maximum_Pulse
5 4 4.9567 0.8292 0.8029 Performance RunTime Run_Pulse Maximum_Pulse
6 3 5.8570 0.8101 0.7890 RunTime Run_Pulse Maximum_Pulse
7 3 5.9367 0.8096 0.7884 RunTime Age Run_Pulse
8 5 5.9783 0.8356 0.8027 RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse
9 5 5.9856 0.8356 0.8027 Performance Age Weight Run_Pulse Maximum_Pulse
10 6 6.0492 0.8483 0.8104 Performance RunTime Age Weight Run_Pulse Maximum_Pulse
11 6 6.1758 0.8475 0.8094 RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse
12 6 6.6171 0.8446 0.8057 Performance RunTime Weight Run_Pulse Rest_Pulse Maximum_Pulse
13 6 6.7111 0.8440 0.8049 Performance RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse
14 4 6.8865 0.8165 0.7882 Performance RunTime Age Run_Pulse
15 5 6.9446 0.8293 0.7951 Performance RunTime Run_Pulse Rest_Pulse Maximum_Pulse
16 4 6.9623 0.8160 0.7877 RunTime Weight Run_Pulse Maximum_Pulse
17 4 7.0752 0.8152 0.7868 RunTime Age Weight Run_Pulse
18 3 7.1734 0.8014 0.7794 Performance RunTime Run_Pulse
19 6 7.7279 0.8373 0.7966 Performance Age Weight Run_Pulse Rest_Pulse Maximum_Pulse
20 4 7.7942 0.8105 0.7814 RunTime Run_Pulse Rest_Pulse Maximum_Pulse


Best Models Using All-Regression Option

The REG Procedure

Model: ALL_REG

Dependent Variable: Oxygen_Consumption

C(p) Selection Method

 C(p) = 6.0492 
 Number of Parameters = 7 
 Model = Performance RunTime Age Weight Run_Pulse Maximum_Pulse  C(p) = 5.857 
 Number of Parameters = 4 
 Model = RunTime Run_Pulse Maximum_Pulse  C(p) = 4.2598 
 Number of Parameters = 6 
 Model = RunTime Age Weight Run_Pulse Maximum_Pulse  C(p) = 4.0004 
 Number of Parameters = 5 
 Model = RunTime Age Run_Pulse Maximum_Pulse  C(p) = 7.7942 
 Number of Parameters = 5 
 Model = RunTime Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 7.7279 
 Number of Parameters = 7 
 Model = Performance Age Weight Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 7.1734 
 Number of Parameters = 4 
 Model = Performance RunTime Run_Pulse  C(p) = 7.0752 
 Number of Parameters = 5 
 Model = RunTime Age Weight Run_Pulse  C(p) = 6.9623 
 Number of Parameters = 5 
 Model = RunTime Weight Run_Pulse Maximum_Pulse  C(p) = 6.9446 
 Number of Parameters = 6 
 Model = Performance RunTime Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 6.8865 
 Number of Parameters = 5 
 Model = Performance RunTime Age Run_Pulse  C(p) = 6.7111 
 Number of Parameters = 7 
 Model = Performance RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 6.6171 
 Number of Parameters = 7 
 Model = Performance RunTime Weight Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 6.1758 
 Number of Parameters = 7 
 Model = RunTime Age Weight Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 5.9856 
 Number of Parameters = 6 
 Model = Performance Age Weight Run_Pulse Maximum_Pulse  C(p) = 5.9783 
 Number of Parameters = 6 
 Model = RunTime Age Run_Pulse Rest_Pulse Maximum_Pulse  C(p) = 5.9367 
 Number of Parameters = 4 
 Model = RunTime Age Run_Pulse  C(p) = 4.9567 
 Number of Parameters = 5 
 Model = Performance RunTime Run_Pulse Maximum_Pulse  C(p) = 4.7168 
 Number of Parameters = 6 
 Model = Performance RunTime Age Run_Pulse Maximum_Pulse  C(p) = 4.7158 
 Number of Parameters = 6 
 Model = Performance RunTime Weight Run_Pulse Maximum_Pulse  Slope = 2 
 Y = -7  Slope = 1 
 Y = 0

In [13]:
proc reg data=statdata.fitness;
   PREDICT_mpc: model Oxygen_Consumption= 
                  RunTime Age Run_Pulse Maximum_Pulse; 
   EXPLAIN_hcp: model Oxygen_Consumption= 
                  RunTime Age Weight Run_Pulse Maximum_Pulse; 
   title 'Check "Best" Two Candidate Models';
run;
quit;
title;


Out[13]:
SAS Output

Check "Best" Two Candidate Models

The REG Procedure

Model: PREDICT_mpc

Dependent Variable: Oxygen_Consumption

Number of Observations Read 31
Number of Observations Used 31
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 4 711.45087 177.86272 33.01 <.0001
Error 26 140.10368 5.38860    
Corrected Total 30 851.55455      
Root MSE 2.32134 R-Square 0.8355
Dependent Mean 47.37581 Adj R-Sq 0.8102
Coeff Var 4.89984    
Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 97.16952 11.65703 8.34 <.0001
RunTime 1 -2.77576 0.34159 -8.13 <.0001
Age 1 -0.18903 0.09439 -2.00 0.0557
Run_Pulse 1 -0.34568 0.11820 -2.92 0.0071
Maximum_Pulse 1 0.27188 0.13438 2.02 0.0534

Check "Best" Two Candidate Models

The REG Procedure

Model: PREDICT_mpc

Dependent Variable: Oxygen_Consumption

 Residual = -0.234 
 Predicted Value = 37.624 
 Observation Number = 31  Residual = -0.808 
 Predicted Value = 40.248 
 Observation Number = 30  Residual = -0.7 
 Predicted Value = 39.9 
 Observation Number = 29  Residual = 0.3699 
 Predicted Value = 39.04 
 Observation Number = 28  Residual = 1.1428 
 Predicted Value = 44.537 
 Observation Number = 27  Residual = 1.7953 
 Predicted Value = 43.015 
 Observation Number = 26  Residual = 2.6594 
 Predicted Value = 45.261 
 Observation Number = 25  Residual = -0.633 
 Predicted Value = 45.243 
 Observation Number = 24  Residual = -0.811 
 Predicted Value = 46.891 
 Observation Number = 23  Residual = -0.058 
 Predicted Value = 44.808 
 Observation Number = 22  Residual = 1.0395 
 Predicted Value = 44.08 
 Observation Number = 21  Residual = -4.984 
 Predicted Value = 45.824 
 Observation Number = 20  Residual = -0.054 
 Predicted Value = 49.144 
 Observation Number = 19  Residual = -0.181 
 Predicted Value = 47.451 
 Observation Number = 18  Residual = 1.2772 
 Predicted Value = 46.193 
 Observation Number = 17  Residual = 0.6947 
 Predicted Value = 45.095 
 Observation Number = 16  Residual = 4.7245 
 Predicted Value = 47.126 
 Observation Number = 15  Residual = -1.463 
 Predicted Value = 48.233 
 Observation Number = 14  Residual = 2.2042 
 Predicted Value = 48.336 
 Observation Number = 13  Residual = 2.8605 
 Predicted Value = 47.529 
 Observation Number = 12  Residual = -2.694 
 Predicted Value = 48.004 
 Observation Number = 11  Residual = -2.778 
 Predicted Value = 49.448 
 Observation Number = 10  Residual = 0.7372 
 Predicted Value = 49.813 
 Observation Number = 9  Residual = -3.61 
 Predicted Value = 49.05 
 Observation Number = 8  Residual = 0.0376 
 Predicted Value = 48.632 
 Observation Number = 7  Residual = -1.932 
 Predicted Value = 51.802 
 Observation Number = 6  Residual = -1.98 
 Predicted Value = 51.14 
 Observation Number = 5  Residual = -86E-5 
 Predicted Value = 54.631 
 Observation Number = 4  Residual = -2.481 
 Predicted Value = 56.781 
 Observation Number = 3  Residual = 2.2238 
 Predicted Value = 57.836 
 Observation Number = 2  Residual = 3.6367 
 Predicted Value = 55.933 
 Observation Number = 1  Y = 0  RStudent = -0.125 
 Predicted Value = 37.624 
 Observation Number = 31  RStudent = -0.383 
 Predicted Value = 40.248 
 Observation Number = 30  RStudent = -0.324 
 Predicted Value = 39.9 
 Observation Number = 29  RStudent = 0.1747 
 Predicted Value = 39.04 
 Observation Number = 28  RStudent = 0.531 
 Predicted Value = 44.537 
 Observation Number = 27  RStudent = 0.8024 
 Predicted Value = 43.015 
 Observation Number = 26  RStudent = 1.1944 
 Predicted Value = 45.261 
 Observation Number = 25  RStudent = -0.278 
 Predicted Value = 45.243 
 Observation Number = 24  RStudent = -0.378 
 Predicted Value = 46.891 
 Observation Number = 23  RStudent = -0.026 
 Predicted Value = 44.808 
 Observation Number = 22  RStudent = 0.4597 
 Predicted Value = 44.08 
 Observation Number = 21  RStudent = -2.39 
 Predicted Value = 45.824 
 Observation Number = 20  RStudent = -0.025 
 Predicted Value = 49.144 
 Observation Number = 19  RStudent = -0.081 
 Predicted Value = 47.451 
 Observation Number = 18  RStudent = 0.5622 
 Predicted Value = 46.193 
 Observation Number = 17  RStudent = 0.3369 
 Predicted Value = 45.095 
 Observation Number = 16  RStudent = 2.3015 
 Predicted Value = 47.126 
 Observation Number = 15  RStudent = -0.656 
 Predicted Value = 48.233 
 Observation Number = 14  RStudent = 1.0309 
 Predicted Value = 48.336 
 Observation Number = 13  RStudent = 1.3185 
 Predicted Value = 47.529 
 Observation Number = 12  RStudent = -1.3 
 Predicted Value = 48.004 
 Observation Number = 11  RStudent = -1.25 
 Predicted Value = 49.448 
 Observation Number = 10  RStudent = 0.3554 
 Predicted Value = 49.813 
 Observation Number = 9  RStudent = -1.699 
 Predicted Value = 49.05 
 Observation Number = 8  RStudent = 0.0183 
 Predicted Value = 48.632 
 Observation Number = 7  RStudent = -0.926 
 Predicted Value = 51.802 
 Observation Number = 6  RStudent = -0.966 
 Predicted Value = 51.14 
 Observation Number = 5  RStudent = -41E-5 
 Predicted Value = 54.631 
 Observation Number = 4  RStudent = -1.218 
 Predicted Value = 56.781 
 Observation Number = 3  RStudent = 1.3526 
 Predicted Value = 57.836 
 Observation Number = 2  RStudent = 1.7718 
 Predicted Value = 55.933 
 Observation Number = 1  Y = 2  Y = -2  RStudent = -0.125 
 Hat Diagonal = 0.371 
 Observation Number = 31  RStudent = -0.383 
 Hat Diagonal = 0.1995 
 Observation Number = 30  RStudent = -0.324 
 Hat Diagonal = 0.1617 
 Observation Number = 29  RStudent = 0.1747 
 Hat Diagonal = 0.1986 
 Observation Number = 28  RStudent = 0.531 
 Hat Diagonal = 0.1641 
 Observation Number = 27  RStudent = 0.8024 
 Hat Diagonal = 0.0837 
 Observation Number = 26  RStudent = 1.1944 
 Hat Diagonal = 0.0649 
 Observation Number = 25  RStudent = -0.278 
 Hat Diagonal = 0.0727 
 Observation Number = 24  RStudent = -0.378 
 Hat Diagonal = 0.1738 
 Observation Number = 23  RStudent = -0.026 
 Hat Diagonal = 0.09 
 Observation Number = 22  RStudent = 0.4597 
 Hat Diagonal = 0.0797 
 Observation Number = 21  RStudent = -2.39 
 Hat Diagonal = 0.0466 
 Observation Number = 20  RStudent = -0.025 
 Hat Diagonal = 0.1304 
 Observation Number = 19  RStudent = -0.081 
 Hat Diagonal = 0.1086 
 Observation Number = 18  RStudent = 0.5622 
 Hat Diagonal = 0.0673 
 Observation Number = 17  RStudent = 0.3369 
 Hat Diagonal = 0.238 
 Observation Number = 16  RStudent = 2.3015 
 Hat Diagonal = 0.0888 
 Observation Number = 15  RStudent = -0.656 
 Hat Diagonal = 0.096 
 Observation Number = 14  RStudent = 1.0309 
 Hat Diagonal = 0.1495 
 Observation Number = 13  RStudent = 1.3185 
 Hat Diagonal = 0.1017 
 Observation Number = 12  RStudent = -1.3 
 Hat Diagonal = 0.1824 
 Observation Number = 11  RStudent = -1.25 
 Hat Diagonal = 0.064 
 Observation Number = 10  RStudent = 0.3554 
 Hat Diagonal = 0.2281 
 Observation Number = 9  RStudent = -1.699 
 Hat Diagonal = 0.1008 
 Observation Number = 8  RStudent = 0.0183 
 Hat Diagonal = 0.2485 
 Observation Number = 7  RStudent = -0.926 
 Hat Diagonal = 0.1964 
 Observation Number = 6  RStudent = -0.966 
 Hat Diagonal = 0.2223 
 Observation Number = 5  RStudent = -41E-5 
 Hat Diagonal = 0.2193 
 Observation Number = 4  RStudent = -1.218 
 Hat Diagonal = 0.2155 
 Observation Number = 3  RStudent = 1.3526 
 Hat Diagonal = 0.4824 
 Observation Number = 2  RStudent = 1.7718 
 Hat Diagonal = 0.1538 
 Observation Number = 1  X = 0.3226  Y = -2  Y = 2  Quantile = 2.0537 
 Residual = 4.7245  Quantile = 1.6258 
 Residual = 3.6367  Quantile = 1.3787 
 Residual = 2.8605  Quantile = 1.1952 
 Residual = 2.6594  Quantile = 1.045 
 Residual = 2.2238  Quantile = 0.9154 
 Residual = 2.2042  Quantile = 0.7995 
 Residual = 1.7953  Quantile = 0.6935 
 Residual = 1.2772  Quantile = 0.5948 
 Residual = 1.1428  Quantile = 0.5015 
 Residual = 1.0395  Quantile = 0.4125 
 Residual = 0.7372  Quantile = 0.3266 
 Residual = 0.6947  Quantile = 0.243 
 Residual = 0.3699  Quantile = 0.1611 
 Residual = 0.0376  Quantile = 0.0803 
 Residual = -86E-5  Quantile = 0 
 Residual = -0.054  Quantile = -0.08 
 Residual = -0.058  Quantile = -0.161 
 Residual = -0.181  Quantile = -0.243 
 Residual = -0.234  Quantile = -0.327 
 Residual = -0.633  Quantile = -0.412 
 Residual = -0.7  Quantile = -0.502 
 Residual = -0.808  Quantile = -0.595 
 Residual = -0.811  Quantile = -0.693 
 Residual = -1.463  Quantile = -0.8 
 Residual = -1.932  Quantile = -0.915 
 Residual = -1.98  Quantile = -1.045 
 Residual = -2.481  Quantile = -1.195 
 Residual = -2.694  Quantile = -1.379 
 Residual = -2.778  Quantile = -1.626 
 Residual = -3.61  Quantile = -2.054 
 Residual = -4.984  Slope = 2.161 
 Y = 25E-15  Oxygen_Consumption = 37.39 
 Predicted Value = 37.624 
 Observation Number = 31  Oxygen_Consumption = 39.44 
 Predicted Value = 40.248 
 Observation Number = 30  Oxygen_Consumption = 39.2 
 Predicted Value = 39.9 
 Observation Number = 29  Oxygen_Consumption = 39.41 
 Predicted Value = 39.04 
 Observation Number = 28  Oxygen_Consumption = 45.68 
 Predicted Value = 44.537 
 Observation Number = 27  Oxygen_Consumption = 44.81 
 Predicted Value = 43.015 
 Observation Number = 26  Oxygen_Consumption = 47.92 
 Predicted Value = 45.261 
 Observation Number = 25  Oxygen_Consumption = 44.61 
 Predicted Value = 45.243 
 Observation Number = 24  Oxygen_Consumption = 46.08 
 Predicted Value = 46.891 
 Observation Number = 23  Oxygen_Consumption = 44.75 
 Predicted Value = 44.808 
 Observation Number = 22  Oxygen_Consumption = 45.12 
 Predicted Value = 44.08 
 Observation Number = 21  Oxygen_Consumption = 40.84 
 Predicted Value = 45.824 
 Observation Number = 20  Oxygen_Consumption = 49.09 
 Predicted Value = 49.144 
 Observation Number = 19  Oxygen_Consumption = 47.27 
 Predicted Value = 47.451 
 Observation Number = 18  Oxygen_Consumption = 47.47 
 Predicted Value = 46.193 
 Observation Number = 17  Oxygen_Consumption = 45.79 
 Predicted Value = 45.095 
 Observation Number = 16  Oxygen_Consumption = 51.85 
 Predicted Value = 47.126 
 Observation Number = 15  Oxygen_Consumption = 46.77 
 Predicted Value = 48.233 
 Observation Number = 14  Oxygen_Consumption = 50.54 
 Predicted Value = 48.336 
 Observation Number = 13  Oxygen_Consumption = 50.39 
 Predicted Value = 47.529 
 Observation Number = 12  Oxygen_Consumption = 45.31 
 Predicted Value = 48.004 
 Observation Number = 11  Oxygen_Consumption = 46.67 
 Predicted Value = 49.448 
 Observation Number = 10  Oxygen_Consumption = 50.55 
 Predicted Value = 49.813 
 Observation Number = 9  Oxygen_Consumption = 45.44 
 Predicted Value = 49.05 
 Observation Number = 8  Oxygen_Consumption = 48.67 
 Predicted Value = 48.632 
 Observation Number = 7  Oxygen_Consumption = 49.87 
 Predicted Value = 51.802 
 Observation Number = 6  Oxygen_Consumption = 49.16 
 Predicted Value = 51.14 
 Observation Number = 5  Oxygen_Consumption = 54.63 
 Predicted Value = 54.631 
 Observation Number = 4  Oxygen_Consumption = 54.3 
 Predicted Value = 56.781 
 Observation Number = 3  Oxygen_Consumption = 60.06 
 Predicted Value = 57.836 
 Observation Number = 2  Oxygen_Consumption = 59.57 
 Predicted Value = 55.933 
 Observation Number = 1  Slope = 1 
 Y = 0  Cook's D = 0.0019 
 Observation Number = 31  Cook's D = 0.0076 
 Observation Number = 30  Cook's D = 0.0042 
 Observation Number = 29  Cook's D = 0.0016 
 Observation Number = 28  Cook's D = 0.0114 
 Observation Number = 27  Cook's D = 0.0119 
 Observation Number = 26  Cook's D = 0.0195 
 Observation Number = 25  Cook's D = 0.0013 
 Observation Number = 24  Cook's D = 0.0062 
 Observation Number = 23  Cook's D = 1.4E-5 
 Observation Number = 22  Cook's D = 0.0038 
 Observation Number = 21  Cook's D = 0.0473 
 Observation Number = 20  Cook's D = 1.9E-5 
 Observation Number = 19  Cook's D = .00017 
 Observation Number = 18  Cook's D = 0.0047 
 Observation Number = 17  Cook's D = 0.0073 
 Observation Number = 16  Cook's D = 0.0886 
 Observation Number = 15  Cook's D = 0.0093 
 Observation Number = 14  Cook's D = 0.0373 
 Observation Number = 13  Cook's D = 0.0383 
 Observation Number = 12  Cook's D = 0.0735 
 Observation Number = 11  Cook's D = 0.0209 
 Observation Number = 10  Cook's D = 0.0077 
 Observation Number = 9  Cook's D = 0.0603 
 Observation Number = 8  Cook's D = 2.3E-5 
 Observation Number = 7  Cook's D = 0.0421 
 Observation Number = 6  Cook's D = 0.0535 
 Observation Number = 5  Cook's D = 9.8E-9 
 Observation Number = 4  Cook's D = 0.08 
 Observation Number = 3  Cook's D = 0.3305 
 Observation Number = 2  Cook's D = 0.1055 
 Observation Number = 1  Cook's D = 0.0019 
 Observation Number = 31  Cook's D = 0.0076 
 Observation Number = 30  Cook's D = 0.0042 
 Observation Number = 29  Cook's D = 0.0016 
 Observation Number = 28  Cook's D = 0.0114 
 Observation Number = 27  Cook's D = 0.0119 
 Observation Number = 26  Cook's D = 0.0195 
 Observation Number = 25  Cook's D = 0.0013 
 Observation Number = 24  Cook's D = 0.0062 
 Observation Number = 23  Cook's D = 1.4E-5 
 Observation Number = 22  Cook's D = 0.0038 
 Observation Number = 21  Cook's D = 0.0473 
 Observation Number = 20  Cook's D = 1.9E-5 
 Observation Number = 19  Cook's D = .00017 
 Observation Number = 18  Cook's D = 0.0047 
 Observation Number = 17  Cook's D = 0.0073 
 Observation Number = 16  Cook's D = 0.0886 
 Observation Number = 15  Cook's D = 0.0093 
 Observation Number = 14  Cook's D = 0.0373 
 Observation Number = 13  Cook's D = 0.0383 
 Observation Number = 12  Cook's D = 0.0735 
 Observation Number = 11  Cook's D = 0.0209 
 Observation Number = 10  Cook's D = 0.0077 
 Observation Number = 9  Cook's D = 0.0603 
 Observation Number = 8  Cook's D = 2.3E-5 
 Observation Number = 7  Cook's D = 0.0421 
 Observation Number = 6  Cook's D = 0.0535 
 Observation Number = 5  Cook's D = 9.8E-9 
 Observation Number = 4  Cook's D = 0.08 
 Observation Number = 3  Cook's D = 0.3305 
 Observation Number = 2  Cook's D = 0.1055 
 Observation Number = 1  Y = 0.129  Residual = 6.4831 
 Percent = 0.4102  Residual = 6.4177 
 Percent = 0.449  Residual = 6.4177 
 Percent = 0.449  Residual = 6.3522 
 Percent = 0.491  Residual = 6.3522 
 Percent = 0.491  Residual = 6.2867 
 Percent = 0.5365  Residual = 6.2867 
 Percent = 0.5365  Residual = 6.2212 
 Percent = 0.5857  Residual = 6.2212 
 Percent = 0.5857  Residual = 6.1557 
 Percent = 0.6388  Residual = 6.1557 
 Percent = 0.6388  Residual = 6.0902 
 Percent = 0.6961  Residual = 6.0902 
 Percent = 0.6961  Residual = 6.0247 
 Percent = 0.7578  Residual = 6.0247 
 Percent = 0.7578  Residual = 5.9592 
 Percent = 0.8242  Residual = 5.9592 
 Percent = 0.8242  Residual = 5.8938 
 Percent = 0.8956  Residual = 5.8938 
 Percent = 0.8956  Residual = 5.8283 
 Percent = 0.9724  Residual = 5.8283 
 Percent = 0.9724  Residual = 5.7628 
 Percent = 1.0547  Residual = 5.7628 
 Percent = 1.0547  Residual = 5.6973 
 Percent = 1.1429  Residual = 5.6973 
 Percent = 1.1429  Residual = 5.6318 
 Percent = 1.2374  Residual = 5.6318 
 Percent = 1.2374  Residual = 5.5663 
 Percent = 1.3385  Residual = 5.5663 
 Percent = 1.3385  Residual = 5.5008 
 Percent = 1.4465  Residual = 5.5008 
 Percent = 1.4465  Residual = 5.4354 
 Percent = 1.5617  Residual = 5.4354 
 Percent = 1.5617  Residual = 5.3699 
 Percent = 1.6846  Residual = 5.3699 
 Percent = 1.6846  Residual = 5.3044 
 Percent = 1.8156  Residual = 5.3044 
 Percent = 1.8156  Residual = 5.2389 
 Percent = 1.9548  Residual = 5.2389 
 Percent = 1.9548  Residual = 5.1734 
 Percent = 2.1029  Residual = 5.1734 
 Percent = 2.1029  Residual = 5.1079 
 Percent = 2.2601  Residual = 5.1079 
 Percent = 2.2601  Residual = 5.0424 
 Percent = 2.4268  Residual = 5.0424 
 Percent = 2.4268  Residual = 4.977 
 Percent = 2.6034  Residual = 4.977 
 Percent = 2.6034  Residual = 4.9115 
 Percent = 2.7903  Residual = 4.9115 
 Percent = 2.7903  Residual = 4.846 
 Percent = 2.9878  Residual = 4.846 
 Percent = 2.9878  Residual = 4.7805 
 Percent = 3.1965  Residual = 4.7805 
 Percent = 3.1965  Residual = 4.715 
 Percent = 3.4165  Residual = 4.715 
 Percent = 3.4165  Residual = 4.6495 
 Percent = 3.6484  Residual = 4.6495 
 Percent = 3.6484  Residual = 4.584 
 Percent = 3.8924  Residual = 4.584 
 Percent = 3.8924  Residual = 4.5186 
 Percent = 4.1489  Residual = 4.5186 
 Percent = 4.1489  Residual = 4.4531 
 Percent = 4.4182  Residual = 4.4531 
 Percent = 4.4182  Residual = 4.3876 
 Percent = 4.7007  Residual = 4.3876 
 Percent = 4.7007  Residual = 4.3221 
 Percent = 4.9967  Residual = 4.3221 
 Percent = 4.9967  Residual = 4.2566 
 Percent = 5.3065  Residual = 4.2566 
 Percent = 5.3065  Residual = 4.1911 
 Percent = 5.6303  Residual = 4.1911 
 Percent = 5.6303  Residual = 4.1256 
 Percent = 5.9684  Residual = 4.1256 
 Percent = 5.9684  Residual = 4.0601 
 Percent = 6.3209  Residual = 4.0601 
 Percent = 6.3209  Residual = 3.9947 
 Percent = 6.6882  Residual = 3.9947 
 Percent = 6.6882  Residual = 3.9292 
 Percent = 7.0702  Residual = 3.9292 
 Percent = 7.0702  Residual = 3.8637 
 Percent = 7.4673  Residual = 3.8637 
 Percent = 7.4673  Residual = 3.7982 
 Percent = 7.8794  Residual = 3.7982 
 Percent = 7.8794  Residual = 3.7327 
 Percent = 8.3066  Residual = 3.7327 
 Percent = 8.3066  Residual = 3.6672 
 Percent = 8.7489  Residual = 3.6672 
 Percent = 8.7489  Residual = 3.6017 
 Percent = 9.2064  Residual = 3.6017 
 Percent = 9.2064  Residual = 3.5363 
 Percent = 9.6789  Residual = 3.5363 
 Percent = 9.6789  Residual = 3.4053 
 Percent = 10.668  Residual = 3.4053 
 Percent = 10.668  Residual = 3.2743 
 Percent = 11.716  Residual = 3.2743 
 Percent = 11.716  Residual = 3.1433 
 Percent = 12.819  Residual = 3.1433 
 Percent = 12.819  Residual = 3.0124 
 Percent = 13.975  Residual = 3.0124 
 Percent = 13.975  Residual = 2.8814 
 Percent = 15.179  Residual = 2.8814 
 Percent = 15.179  Residual = 1.8991 
 Percent = 25.095  Residual = 1.8991 
 Percent = 25.095  Residual = 1.7026 
 Percent = 27.07  Residual = 1.7026 
 Percent = 27.07  Residual = 1.5717 
 Percent = 28.341  Residual = 1.5717 
 Percent = 28.341  Residual = 1.4407 
 Percent = 29.564  Residual = 1.4407 
 Percent = 29.564  Residual = 1.3097 
 Percent = 30.727  Residual = 1.3097 
 Percent = 30.727  Residual = 1.2442 
 Percent = 31.282  Residual = 1.2442 
 Percent = 31.282  Residual = 1.1788 
 Percent = 31.818  Residual = 1.1788 
 Percent = 31.818  Residual = 1.1133 
 Percent = 32.333  Residual = 1.1133 
 Percent = 32.333  Residual = 1.0478 
 Percent = 32.827  Residual = 1.0478 
 Percent = 32.827  Residual = 0.9823 
 Percent = 33.297  Residual = 0.9823 
 Percent = 33.297  Residual = 0.9168 
 Percent = 33.744  Residual = 0.9168 
 Percent = 33.744  Residual = 0.8513 
 Percent = 34.165  Residual = 0.8513 
 Percent = 34.165  Residual = 0.7858 
 Percent = 34.559  Residual = 0.7858 
 Percent = 34.559  Residual = 0.7203 
 Percent = 34.926  Residual = 0.7203 
 Percent = 34.926  Residual = 0.6549 
 Percent = 35.264  Residual = 0.6549 
 Percent = 35.264  Residual = 0.5894 
 Percent = 35.573  Residual = 0.5894 
 Percent = 35.573  Residual = 0.5239 
 Percent = 35.852  Residual = 0.5239 
 Percent = 35.852  Residual = 0.4584 
 Percent = 36.1  Residual = 0.4584 
 Percent = 36.1  Residual = 0.3929 
 Percent = 36.316  Residual = 0.3929 
 Percent = 36.316  Residual = 0.3274 
 Percent = 36.5  Residual = 0.3274 
 Percent = 36.5  Residual = 0.2619 
 Percent = 36.651  Residual = 0.2619 
 Percent = 36.651  Residual = 0.1965 
 Percent = 36.769  Residual = 0.1965 
 Percent = 36.769  Residual = 0.131 
 Percent = 36.853  Residual = 0.131 
 Percent = 36.853  Residual = 0.0655 
 Percent = 36.904  Residual = 0.0655 
 Percent = 36.904  Residual = 31E-15 
 Percent = 36.921  Residual = 31E-15 
 Percent = 36.921  Residual = -0.065 
 Percent = 36.904  Residual = -0.065 
 Percent = 36.904  Residual = -0.131 
 Percent = 36.853  Residual = -0.131 
 Percent = 36.853  Residual = -0.196 
 Percent = 36.769  Residual = -0.196 
 Percent = 36.769  Residual = -0.262 
 Percent = 36.651  Residual = -0.262 
 Percent = 36.651  Residual = -0.327 
 Percent = 36.5  Residual = -0.327 
 Percent = 36.5  Residual = -0.393 
 Percent = 36.316  Residual = -0.393 
 Percent = 36.316  Residual = -0.458 
 Percent = 36.1  Residual = -0.458 
 Percent = 36.1  Residual = -0.524 
 Percent = 35.852  Residual = -0.524 
 Percent = 35.852  Residual = -0.589 
 Percent = 35.573  Residual = -0.589 
 Percent = 35.573  Residual = -0.655 
 Percent = 35.264  Residual = -0.655 
 Percent = 35.264  Residual = -0.72 
 Percent = 34.926  Residual = -0.72 
 Percent = 34.926  Residual = -0.786 
 Percent = 34.559  Residual = -0.786 
 Percent = 34.559  Residual = -0.851 
 Percent = 34.165  Residual = -0.851 
 Percent = 34.165  Residual = -0.917 
 Percent = 33.744  Residual = -0.917 
 Percent = 33.744  Residual = -0.982 
 Percent = 33.297  Residual = -0.982 
 Percent = 33.297  Residual = -1.048 
 Percent = 32.827  Residual = -1.048 
 Percent = 32.827  Residual = -1.113 
 Percent = 32.333  Residual = -1.113 
 Percent = 32.333  Residual = -1.179 
 Percent = 31.818  Residual = -1.179 
 Percent = 31.818  Residual = -1.244 
 Percent = 31.282  Residual = -1.244 
 Percent = 31.282  Residual = -1.31 
 Percent = 30.727  Residual = -1.31 
 Percent = 30.727  Residual = -1.441 
 Percent = 29.564  Residual = -1.441 
 Percent = 29.564  Residual = -1.572 
 Percent = 28.341  Residual = -1.572 
 Percent = 28.341  Residual = -2.358 
 Percent = 20.364  Residual = -2.358 
 Percent = 20.364  Residual = -2.619 
 Percent = 17.711  Residual = -2.619 
 Percent = 17.711  Residual = -2.816 
 Percent = 15.797  Residual = -2.816 
 Percent = 15.797  Residual = -2.947 
 Percent = 14.571  Residual = -2.947 
 Percent = 14.571  Residual = -3.078 
 Percent = 13.391  Residual = -3.078 
 Percent = 13.391  Residual = -3.209 
 Percent = 12.261  Residual = -3.209 
 Percent = 12.261  Residual = -3.34 
 Percent = 11.185  Residual = -3.34 
 Percent = 11.185  Residual = -3.471 
 Percent = 10.166  Residual = -3.471 
 Percent = 10.166  Residual = -3.536 
 Percent = 9.6789  Residual = -3.536 
 Percent = 9.6789  Residual = -3.602 
 Percent = 9.2064  Residual = -3.602 
 Percent = 9.2064  Residual = -3.667 
 Percent = 8.7489  Residual = -3.667 
 Percent = 8.7489  Residual = -3.733 
 Percent = 8.3066  Residual = -3.733 
 Percent = 8.3066  Residual = -3.798 
 Percent = 7.8794  Residual = -3.798 
 Percent = 7.8794  Residual = -3.864 
 Percent = 7.4673  Residual = -3.864 
 Percent = 7.4673  Residual = -3.929 
 Percent = 7.0702  Residual = -3.929 
 Percent = 7.0702  Residual = -3.995 
 Percent = 6.6882  Residual = -3.995 
 Percent = 6.6882  Residual = -4.06 
 Percent = 6.3209  Residual = -4.06 
 Percent = 6.3209  Residual = -4.126 
 Percent = 5.9684  Residual = -4.126 
 Percent = 5.9684  Residual = -4.191 
 Percent = 5.6303  Residual = -4.191 
 Percent = 5.6303  Residual = -4.257 
 Percent = 5.3065  Residual = -4.257 
 Percent = 5.3065  Residual = -4.322 
 Percent = 4.9967  Residual = -4.322 
 Percent = 4.9967  Residual = -4.388 
 Percent = 4.7007  Residual = -4.388 
 Percent = 4.7007  Residual = -4.453 
 Percent = 4.4182  Residual = -4.453 
 Percent = 4.4182  Residual = -4.519 
 Percent = 4.1489  Residual = -4.519 
 Percent = 4.1489  Residual = -4.584 
 Percent = 3.8924  Residual = -4.584 
 Percent = 3.8924  Residual = -4.65 
 Percent = 3.6484  Residual = -4.65 
 Percent = 3.6484  Residual = -4.715 
 Percent = 3.4165  Residual = -4.715 
 Percent = 3.4165  Residual = -4.78 
 Percent = 3.1965  Residual = -4.78 
 Percent = 3.1965  Residual = -4.846 
 Percent = 2.9878  Residual = -4.846 
 Percent = 2.9878  Residual = -4.911 
 Percent = 2.7903  Residual = -4.911 
 Percent = 2.7903  Residual = -4.977 
 Percent = 2.6034  Residual = -4.977 
 Percent = 2.6034  Residual = -5.042 
 Percent = 2.4268  Residual = -5.042 
 Percent = 2.4268  Residual = -5.108 
 Percent = 2.2601  Residual = -5.108 
 Percent = 2.2601  Residual = -5.173 
 Percent = 2.1029  Residual = -5.173 
 Percent = 2.1029  Residual = -5.239 
 Percent = 1.9548  Residual = -5.239 
 Percent = 1.9548  Residual = -5.304 
 Percent = 1.8156  Residual = -5.304 
 Percent = 1.8156  Residual = -5.37 
 Percent = 1.6846  Residual = -5.37 
 Percent = 1.6846  Residual = -5.435 
 Percent = 1.5617  Residual = -5.435 
 Percent = 1.5617  Residual = -5.501 
 Percent = 1.4465  Residual = -5.501 
 Percent = 1.4465  Residual = -5.566 
 Percent = 1.3385  Residual = -5.566 
 Percent = 1.3385  Residual = -5.632 
 Percent = 1.2374  Residual = -5.632 
 Percent = 1.2374  Residual = -5.697 
 Percent = 1.1429  Residual = -5.697 
 Percent = 1.1429  Residual = -5.763 
 Percent = 1.0547  Residual = -5.763 
 Percent = 1.0547  Residual = -5.828 
 Percent = 0.9724  Residual = -5.828 
 Percent = 0.9724  Residual = -5.894 
 Percent = 0.8956  Residual = -5.894 
 Percent = 0.8956  Residual = -5.959 
 Percent = 0.8242  Residual = -5.959 
 Percent = 0.8242  Residual = -6.025 
 Percent = 0.7578  Residual = -6.025 
 Percent = 0.7578  Residual = -6.09 
 Percent = 0.6961  Residual = -6.09 
 Percent = 0.6961  Residual = -6.156 
 Percent = 0.6388  Residual = -6.156 
 Percent = 0.6388  Residual = -6.221 
 Percent = 0.5857  Residual = -6.221 
 Percent = 0.5857  Residual = -6.287 
 Percent = 0.5365  Residual = -6.287 
 Percent = 0.5365  Residual = -6.352 
 Percent = 0.491  Residual = -6.352 
 Percent = 0.491  Residual = -6.418 
 Percent = 0.449  Residual = -6.418 
 Percent = 0.449  Residual = -6.483 
 Percent = 0.4102  Residual = 4 
 Percent = 6.4516  Residual = 4 
 Percent = 6.4516  Residual = 2 
 Percent = 25.806  Residual = 2 
 Percent = 25.806  Residual = 0 
 Percent = 41.935  Residual = 0 
 Percent = 41.935  Residual = -2 
 Percent = 19.355  Residual = -2 
 Percent = 19.355  Residual = -4 
 Percent = 6.4516  Residual = -4 
 Percent = 6.4516  Proportion Less = 0.98 
 Fit-Mean = 10.46  Proportion Less = 0.948 
 Fit-Mean = 9.4054  Proportion Less = 0.916 
 Fit-Mean = 8.5575  Proportion Less = 0.884 
 Fit-Mean = 7.255  Proportion Less = 0.852 
 Fit-Mean = 4.4259  Proportion Less = 0.82 
 Fit-Mean = 3.7641  Proportion Less = 0.788 
 Fit-Mean = 2.437  Proportion Less = 0.756 
 Fit-Mean = 2.0718  Proportion Less = 0.724 
 Fit-Mean = 1.7684  Proportion Less = 0.692 
 Fit-Mean = 1.6747  Proportion Less = 0.66 
 Fit-Mean = 1.2566  Proportion Less = 0.628 
 Fit-Mean = 0.96  Proportion Less = 0.596 
 Fit-Mean = 0.8574  Proportion Less = 0.564 
 Fit-Mean = 0.6281  Proportion Less = 0.532 
 Fit-Mean = 0.1537  Proportion Less = 0.5 
 Fit-Mean = 0.0749  Proportion Less = 0.468 
 Fit-Mean = -0.25  Proportion Less = 0.436 
 Fit-Mean = -0.485  Proportion Less = 0.404 
 Fit-Mean = -1.183  Proportion Less = 0.372 
 Fit-Mean = -1.552  Proportion Less = 0.34 
 Fit-Mean = -2.115  Proportion Less = 0.308 
 Fit-Mean = -2.132  Proportion Less = 0.276 
 Fit-Mean = -2.281  Proportion Less = 0.244 
 Fit-Mean = -2.567  Proportion Less = 0.212 
 Fit-Mean = -2.839  Proportion Less = 0.18 
 Fit-Mean = -3.295  Proportion Less = 0.148 
 Fit-Mean = -4.361  Proportion Less = 0.116 
 Fit-Mean = -7.127  Proportion Less = 0.084 
 Fit-Mean = -7.476  Proportion Less = 0.052 
 Fit-Mean = -8.336  Proportion Less = 0.02 
 Fit-Mean = -9.752  Proportion Less = 0.98 
 Residual = 4.7245  Proportion Less = 0.948 
 Residual = 3.6367  Proportion Less = 0.916 
 Residual = 2.8605  Proportion Less = 0.884 
 Residual = 2.6594  Proportion Less = 0.852 
 Residual = 2.2238  Proportion Less = 0.82 
 Residual = 2.2042  Proportion Less = 0.788 
 Residual = 1.7953  Proportion Less = 0.756 
 Residual = 1.2772  Proportion Less = 0.724 
 Residual = 1.1428  Proportion Less = 0.692 
 Residual = 1.0395  Proportion Less = 0.66 
 Residual = 0.7372  Proportion Less = 0.628 
 Residual = 0.6947  Proportion Less = 0.596 
 Residual = 0.3699  Proportion Less = 0.564 
 Residual = 0.0376  Proportion Less = 0.532 
 Residual = -86E-5  Proportion Less = 0.5 
 Residual = -0.054  Proportion Less = 0.468 
 Residual = -0.058  Proportion Less = 0.436 
 Residual = -0.181  Proportion Less = 0.404 
 Residual = -0.234  Proportion Less = 0.372 
 Residual = -0.633  Proportion Less = 0.34 
 Residual = -0.7  Proportion Less = 0.308 
 Residual = -0.808  Proportion Less = 0.276 
 Residual = -0.811  Proportion Less = 0.244 
 Residual = -1.463  Proportion Less = 0.212 
 Residual = -1.932  Proportion Less = 0.18 
 Residual = -1.98  Proportion Less = 0.148 
 Residual = -2.481  Proportion Less = 0.116 
 Residual = -2.694  Proportion Less = 0.084 
 Residual = -2.778  Proportion Less = 0.052 
 Residual = -3.61  Proportion Less = 0.02 
 Residual = -4.984
 Residual = -0.234 
 RunTime = 14.03 
 Observation Number = 31  Residual = -0.808 
 RunTime = 13.08 
 Observation Number = 30  Residual = -0.7 
 RunTime = 12.88 
 Observation Number = 29  Residual = 0.3699 
 RunTime = 12.63 
 Observation Number = 28  Residual = 1.1428 
 RunTime = 11.95 
 Observation Number = 27  Residual = 1.7953 
 RunTime = 11.63 
 Observation Number = 26  Residual = 2.6594 
 RunTime = 11.5 
 Observation Number = 25  Residual = -0.633 
 RunTime = 11.37 
 Observation Number = 24  Residual = -0.811 
 RunTime = 11.17 
 Observation Number = 23  Residual = -0.058 
 RunTime = 11.12 
 Observation Number = 22  Residual = 1.0395 
 RunTime = 11.08 
 Observation Number = 21  Residual = -4.984 
 RunTime = 10.95 
 Observation Number = 20  Residual = -0.054 
 RunTime = 10.85 
 Observation Number = 19  Residual = -0.181 
 RunTime = 10.6 
 Observation Number = 18  Residual = 1.2772 
 RunTime = 10.5 
 Observation Number = 17  Residual = 0.6947 
 RunTime = 10.47 
 Observation Number = 16  Residual = 4.7245 
 RunTime = 10.33 
 Observation Number = 15  Residual = -1.463 
 RunTime = 10.25 
 Observation Number = 14  Residual = 2.2042 
 RunTime = 10.13 
 Observation Number = 13  Residual = 2.8605 
 RunTime = 10.08 
 Observation Number = 12  Residual = -2.694 
 RunTime = 10.07 
 Observation Number = 11  Residual = -2.778 
 RunTime = 10 
 Observation Number = 10  Residual = 0.7372 
 RunTime = 9.93 
 Observation Number = 9  Residual = -3.61 
 RunTime = 9.63 
 Observation Number = 8  Residual = 0.0376 
 RunTime = 9.4 
 Observation Number = 7  Residual = -1.932 
 RunTime = 9.22 
 Observation Number = 6  Residual = -1.98 
 RunTime = 8.95 
 Observation Number = 5  Residual = -86E-5 
 RunTime = 8.92 
 Observation Number = 4  Residual = -2.481 
 RunTime = 8.65 
 Observation Number = 3  Residual = 2.2238 
 RunTime = 8.63 
 Observation Number = 2  Residual = 3.6367 
 RunTime = 8.17 
 Observation Number = 1  Y = 0  Residual = -0.234 
 Age = 45 
 Observation Number = 31  Residual = -0.808 
 Age = 44 
 Observation Number = 30  Residual = -0.7 
 Age = 54 
 Observation Number = 29  Residual = 0.3699 
 Age = 57 
 Observation Number = 28  Residual = 1.1428 
 Age = 40 
 Observation Number = 27  Residual = 1.7953 
 Age = 47 
 Observation Number = 26  Residual = 2.6594 
 Age = 48 
 Observation Number = 25  Residual = -0.633 
 Age = 44 
 Observation Number = 24  Residual = -0.811 
 Age = 54 
 Observation Number = 23  Residual = -0.058 
 Age = 45 
 Observation Number = 22  Residual = 1.0395 
 Age = 51 
 Observation Number = 21  Residual = -4.984 
 Age = 51 
 Observation Number = 20  Residual = -0.054 
 Age = 43 
 Observation Number = 19  Residual = -0.181 
 Age = 47 
 Observation Number = 18  Residual = 1.2772 
 Age = 52 
 Observation Number = 17  Residual = 0.6947 
 Age = 52 
 Observation Number = 16  Residual = 4.7245 
 Age = 54 
 Observation Number = 15  Residual = -1.463 
 Age = 48 
 Observation Number = 14  Residual = 2.2042 
 Age = 44 
 Observation Number = 13  Residual = 2.8605 
 Age = 49 
 Observation Number = 12  Residual = -2.694 
 Age = 40 
 Observation Number = 11  Residual = -2.778 
 Age = 51 
 Observation Number = 10  Residual = 0.7372 
 Age = 57 
 Observation Number = 9  Residual = -3.61 
 Age = 52 
 Observation Number = 8  Residual = 0.0376 
 Age = 49 
 Observation Number = 7  Residual = -1.932 
 Age = 38 
 Observation Number = 6  Residual = -1.98 
 Age = 49 
 Observation Number = 5  Residual = -86E-5 
 Age = 50 
 Observation Number = 4  Residual = -2.481 
 Age = 43 
 Observation Number = 3  Residual = 2.2238 
 Age = 38 
 Observation Number = 2  Residual = 3.6367 
 Age = 42 
 Observation Number = 1  Y = 0  Residual = -0.234 
 Run_Pulse = 186 
 Observation Number = 31  Residual = -0.808 
 Run_Pulse = 174 
 Observation Number = 30  Residual = -0.7 
 Run_Pulse = 168 
 Observation Number = 29  Residual = 0.3699 
 Run_Pulse = 174 
 Observation Number = 28  Residual = 1.1428 
 Run_Pulse = 176 
 Observation Number = 27  Residual = 1.7953 
 Run_Pulse = 176 
 Observation Number = 26  Residual = 2.6594 
 Run_Pulse = 170 
 Observation Number = 25  Residual = -0.633 
 Run_Pulse = 178 
 Observation Number = 24  Residual = -0.811 
 Run_Pulse = 156 
 Observation Number = 23  Residual = -0.058 
 Run_Pulse = 176 
 Observation Number = 22  Residual = 1.0395 
 Run_Pulse = 172 
 Observation Number = 21  Residual = -4.984 
 Run_Pulse = 168 
 Observation Number = 20  Residual = -0.054 
 Run_Pulse = 162 
 Observation Number = 19  Residual = -0.181 
 Run_Pulse = 162 
 Observation Number = 18  Residual = 1.2772 
 Run_Pulse = 170 
 Observation Number = 17  Residual = 0.6947 
 Run_Pulse = 186 
 Observation Number = 16  Residual = 4.7245 
 Run_Pulse = 166 
 Observation Number = 15  Residual = -1.463 
 Run_Pulse = 162 
 Observation Number = 14  Residual = 2.2042 
 Run_Pulse = 168 
 Observation Number = 13  Residual = 2.8605 
 Run_Pulse = 168 
 Observation Number = 12  Residual = -2.694 
 Run_Pulse = 185 
 Observation Number = 11  Residual = -2.778 
 Run_Pulse = 162 
 Observation Number = 10  Residual = 0.7372 
 Run_Pulse = 148 
 Observation Number = 9  Residual = -3.61 
 Run_Pulse = 164 
 Observation Number = 8  Residual = 0.0376 
 Run_Pulse = 186 
 Observation Number = 7  Residual = -1.932 
 Run_Pulse = 178 
 Observation Number = 6  Residual = -1.98 
 Run_Pulse = 180 
 Observation Number = 5  Residual = -86E-5 
 Run_Pulse = 146 
 Observation Number = 4  Residual = -2.481 
 Run_Pulse = 156 
 Observation Number = 3  Residual = 2.2238 
 Run_Pulse = 170 
 Observation Number = 2  Residual = 3.6367 
 Run_Pulse = 166 
 Observation Number = 1  Y = 0  Residual = -0.234 
 Maximum_Pulse = 192 
 Observation Number = 31  Residual = -0.808 
 Maximum_Pulse = 176 
 Observation Number = 30  Residual = -0.7 
 Maximum_Pulse = 172 
 Observation Number = 29  Residual = 0.3699 
 Maximum_Pulse = 176 
 Observation Number = 28  Residual = 1.1428 
 Maximum_Pulse = 180 
 Observation Number = 27  Residual = 1.7953 
 Maximum_Pulse = 176 
 Observation Number = 26  Residual = 2.6594 
 Maximum_Pulse = 176 
 Observation Number = 25  Residual = -0.633 
 Maximum_Pulse = 182 
 Observation Number = 24  Residual = -0.811 
 Maximum_Pulse = 165 
 Observation Number = 23  Residual = -0.058 
 Maximum_Pulse = 176 
 Observation Number = 22  Residual = 1.0395 
 Maximum_Pulse = 172 
 Observation Number = 21  Residual = -4.984 
 Maximum_Pulse = 172 
 Observation Number = 20  Residual = -0.054 
 Maximum_Pulse = 170 
 Observation Number = 19  Residual = -0.181 
 Maximum_Pulse = 164 
 Observation Number = 18  Residual = 1.2772 
 Maximum_Pulse = 172 
 Observation Number = 17  Residual = 0.6947 
 Maximum_Pulse = 188 
 Observation Number = 16  Residual = 4.7245 
 Maximum_Pulse = 170 
 Observation Number = 15  Residual = -1.463 
 Maximum_Pulse = 164 
 Observation Number = 14  Residual = 2.2042 
 Maximum_Pulse = 168 
 Observation Number = 13  Residual = 2.8605 
 Maximum_Pulse = 168 
 Observation Number = 12  Residual = -2.694 
 Maximum_Pulse = 185 
 Observation Number = 11  Residual = -2.778 
 Maximum_Pulse = 168 
 Observation Number = 10  Residual = 0.7372 
 Maximum_Pulse = 155 
 Observation Number = 9  Residual = -3.61 
 Maximum_Pulse = 166 
 Observation Number = 8  Residual = 0.0376 
 Maximum_Pulse = 188 
 Observation Number = 7  Residual = -1.932 
 Maximum_Pulse = 180 
 Observation Number = 6  Residual = -1.98 
 Maximum_Pulse = 185 
 Observation Number = 5  Residual = -86E-5 
 Maximum_Pulse = 155 
 Observation Number = 4  Residual = -2.481 
 Maximum_Pulse = 168 
 Observation Number = 3  Residual = 2.2238 
 Maximum_Pulse = 186 
 Observation Number = 2  Residual = 3.6367 
 Maximum_Pulse = 172 
 Observation Number = 1  Y = 0

Check "Best" Two Candidate Models

The REG Procedure

Model: EXPLAIN_hcp

Dependent Variable: Oxygen_Consumption

Number of Observations Read 31
Number of Observations Used 31
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 5 721.20532 144.24106 27.66 <.0001
Error 25 130.34923 5.21397    
Corrected Total 30 851.55455      
Root MSE 2.28341 R-Square 0.8469
Dependent Mean 47.37581 Adj R-Sq 0.8163
Coeff Var 4.81978    
Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 101.33835 11.86474 8.54 <.0001
RunTime 1 -2.68846 0.34202 -7.86 <.0001
Age 1 -0.21217 0.09437 -2.25 0.0336
Weight 1 -0.07332 0.05360 -1.37 0.1836
Run_Pulse 1 -0.37071 0.11770 -3.15 0.0042
Maximum_Pulse 1 0.30603 0.13452 2.28 0.0317

Check "Best" Two Candidate Models

The REG Procedure

Model: EXPLAIN_hcp

Dependent Variable: Oxygen_Consumption

 Residual = -0.061 
 Predicted Value = 37.451 
 Observation Number = 31  Residual = -0.787 
 Predicted Value = 40.227 
 Observation Number = 30  Residual = 0.3057 
 Predicted Value = 38.894 
 Observation Number = 29  Residual = 0.1415 
 Predicted Value = 39.269 
 Observation Number = 28  Residual = 0.6852 
 Predicted Value = 44.995 
 Observation Number = 27  Residual = 1.7719 
 Predicted Value = 43.038 
 Observation Number = 26  Residual = 1.3319 
 Predicted Value = 46.588 
 Observation Number = 25  Residual = 0.0229 
 Predicted Value = 44.587 
 Observation Number = 24  Residual = -0.616 
 Predicted Value = 46.696 
 Observation Number = 23  Residual = -0.89 
 Predicted Value = 45.64 
 Observation Number = 22  Residual = 0.4454 
 Predicted Value = 44.675 
 Observation Number = 21  Residual = -5.492 
 Predicted Value = 46.332 
 Observation Number = 20  Residual = 0.0267 
 Predicted Value = 49.063 
 Observation Number = 19  Residual = 0.0699 
 Predicted Value = 47.2 
 Observation Number = 18  Residual = 1.8454 
 Predicted Value = 45.625 
 Observation Number = 17  Residual = 0.4546 
 Predicted Value = 45.335 
 Observation Number = 16  Residual = 5.3469 
 Predicted Value = 46.503 
 Observation Number = 15  Residual = -0.244 
 Predicted Value = 47.014 
 Observation Number = 14  Residual = 1.9912 
 Predicted Value = 48.549 
 Observation Number = 13  Residual = 2.7926 
 Predicted Value = 47.597 
 Observation Number = 12  Residual = -3 
 Predicted Value = 48.31 
 Observation Number = 11  Residual = -2.61 
 Predicted Value = 49.28 
 Observation Number = 10  Residual = -0.237 
 Predicted Value = 50.787 
 Observation Number = 9  Residual = -3.385 
 Predicted Value = 48.825 
 Observation Number = 8  Residual = 0.0128 
 Predicted Value = 48.657 
 Observation Number = 7  Residual = -1.191 
 Predicted Value = 51.061 
 Observation Number = 6  Residual = -1.639 
 Predicted Value = 50.799 
 Observation Number = 5  Residual = -0.234 
 Predicted Value = 54.864 
 Observation Number = 4  Residual = -1.949 
 Predicted Value = 56.249 
 Observation Number = 3  Residual = 2.0865 
 Predicted Value = 57.974 
 Observation Number = 2  Residual = 3.0042 
 Predicted Value = 56.566 
 Observation Number = 1  Y = 0  RStudent = -0.033 
 Predicted Value = 37.451 
 Observation Number = 31  RStudent = -0.378 
 Predicted Value = 40.227 
 Observation Number = 30  RStudent = 0.1531 
 Predicted Value = 38.894 
 Observation Number = 29  RStudent = 0.0681 
 Predicted Value = 39.269 
 Observation Number = 28  RStudent = 0.3265 
 Predicted Value = 44.995 
 Observation Number = 27  RStudent = 0.8049 
 Predicted Value = 43.038 
 Observation Number = 26  RStudent = 0.664 
 Predicted Value = 46.588 
 Observation Number = 25  RStudent = 0.0105 
 Predicted Value = 44.587 
 Observation Number = 24  RStudent = -0.292 
 Predicted Value = 46.696 
 Observation Number = 23  RStudent = -0.418 
 Predicted Value = 45.64 
 Observation Number = 22  RStudent = 0.2034 
 Predicted Value = 44.675 
 Observation Number = 21  RStudent = -2.826 
 Predicted Value = 46.332 
 Observation Number = 20  RStudent = 0.0123 
 Predicted Value = 49.063 
 Observation Number = 19  RStudent = 0.0319 
 Predicted Value = 47.2 
 Observation Number = 18  RStudent = 0.8473 
 Predicted Value = 45.625 
 Observation Number = 17  RStudent = 0.2246 
 Predicted Value = 45.335 
 Observation Number = 16  RStudent = 2.8409 
 Predicted Value = 46.503 
 Observation Number = 15  RStudent = -0.121 
 Predicted Value = 47.014 
 Observation Number = 14  RStudent = 0.9462 
 Predicted Value = 48.549 
 Observation Number = 13  RStudent = 1.309 
 Predicted Value = 47.597 
 Observation Number = 12  RStudent = -1.497 
 Predicted Value = 48.31 
 Observation Number = 11  RStudent = -1.193 
 Predicted Value = 49.28 
 Observation Number = 10  RStudent = -0.124 
 Predicted Value = 50.787 
 Observation Number = 9  RStudent = -1.618 
 Predicted Value = 48.825 
 Observation Number = 8  RStudent = 0.0064 
 Predicted Value = 48.657 
 Observation Number = 7  RStudent = -0.596 
 Predicted Value = 51.061 
 Observation Number = 6  RStudent = -0.815 
 Predicted Value = 50.799 
 Observation Number = 5  RStudent = -0.114 
 Predicted Value = 54.864 
 Observation Number = 4  RStudent = -0.981 
 Predicted Value = 56.249 
 Observation Number = 3  RStudent = 1.2892 
 Predicted Value = 57.974 
 Observation Number = 2  RStudent = 1.5027 
 Predicted Value = 56.566 
 Observation Number = 1  Y = 2  Y = -2  RStudent = -0.033 
 Hat Diagonal = 0.374 
 Observation Number = 31  RStudent = -0.378 
 Hat Diagonal = 0.1996 
 Observation Number = 30  RStudent = 0.1531 
 Hat Diagonal = 0.2653 
 Observation Number = 29  RStudent = 0.0681 
 Hat Diagonal = 0.2039 
 Observation Number = 28  RStudent = 0.3265 
 Hat Diagonal = 0.1856 
 Observation Number = 27  RStudent = 0.8049 
 Hat Diagonal = 0.0837 
 Observation Number = 26  RStudent = 0.664 
 Hat Diagonal = 0.2456 
 Observation Number = 25  RStudent = 0.0105 
 Hat Diagonal = 0.1168 
 Observation Number = 24  RStudent = -0.292 
 Hat Diagonal = 0.1777 
 Observation Number = 23  RStudent = -0.418 
 Hat Diagonal = 0.1608 
 Observation Number = 22  RStudent = 0.2034 
 Hat Diagonal = 0.1159 
 Observation Number = 21  RStudent = -2.826 
 Hat Diagonal = 0.0731 
 Observation Number = 20  RStudent = 0.0123 
 Hat Diagonal = 0.1311 
 Observation Number = 19  RStudent = 0.0319 
 Hat Diagonal = 0.115 
 Observation Number = 18  RStudent = 0.8473 
 Hat Diagonal = 0.1004 
 Observation Number = 17  RStudent = 0.2246 
 Hat Diagonal = 0.2439 
 Observation Number = 16  RStudent = 2.8409 
 Hat Diagonal = 0.1285 
 Observation Number = 15  RStudent = -0.121 
 Hat Diagonal = 0.2484 
 Observation Number = 14  RStudent = 0.9462 
 Hat Diagonal = 0.1542 
 Observation Number = 13  RStudent = 1.309 
 Hat Diagonal = 0.1022 
 Observation Number = 12  RStudent = -1.497 
 Hat Diagonal = 0.192 
 Observation Number = 11  RStudent = -1.193 
 Hat Diagonal = 0.0668 
 Observation Number = 10  RStudent = -0.124 
 Hat Diagonal = 0.3254 
 Observation Number = 9  RStudent = -1.618 
 Hat Diagonal = 0.106 
 Observation Number = 8  RStudent = 0.0064 
 Hat Diagonal = 0.2486 
 Observation Number = 7  RStudent = -0.596 
 Hat Diagonal = 0.2527 
 Observation Number = 6  RStudent = -0.815 
 Hat Diagonal = 0.2342 
 Observation Number = 5  RStudent = -0.114 
 Hat Diagonal = 0.2249 
 Observation Number = 4  RStudent = -0.981 
 Hat Diagonal = 0.2445 
 Observation Number = 3  RStudent = 1.2892 
 Hat Diagonal = 0.4843 
 Observation Number = 2  RStudent = 1.5027 
 Hat Diagonal = 0.1948 
 Observation Number = 1  X = 0.3871  Y = -2  Y = 2  Quantile = 2.0537 
 Residual = 5.3469  Quantile = 1.6258 
 Residual = 3.0042  Quantile = 1.3787 
 Residual = 2.7926  Quantile = 1.1952 
 Residual = 2.0865  Quantile = 1.045 
 Residual = 1.9912  Quantile = 0.9154 
 Residual = 1.8454  Quantile = 0.7995 
 Residual = 1.7719  Quantile = 0.6935 
 Residual = 1.3319  Quantile = 0.5948 
 Residual = 0.6852  Quantile = 0.5015 
 Residual = 0.4546  Quantile = 0.4125 
 Residual = 0.4454  Quantile = 0.3266 
 Residual = 0.3057  Quantile = 0.243 
 Residual = 0.1415  Quantile = 0.1611 
 Residual = 0.0699  Quantile = 0.0803 
 Residual = 0.0267  Quantile = 0 
 Residual = 0.0229  Quantile = -0.08 
 Residual = 0.0128  Quantile = -0.161 
 Residual = -0.061  Quantile = -0.243 
 Residual = -0.234  Quantile = -0.327 
 Residual = -0.237  Quantile = -0.412 
 Residual = -0.244  Quantile = -0.502 
 Residual = -0.616  Quantile = -0.595 
 Residual = -0.787  Quantile = -0.693 
 Residual = -0.89  Quantile = -0.8 
 Residual = -1.191  Quantile = -0.915 
 Residual = -1.639  Quantile = -1.045 
 Residual = -1.949  Quantile = -1.195 
 Residual = -2.61  Quantile = -1.379 
 Residual = -3  Quantile = -1.626 
 Residual = -3.385  Quantile = -2.054 
 Residual = -5.492  Slope = 2.0845 
 Y = 41E-15  Oxygen_Consumption = 37.39 
 Predicted Value = 37.451 
 Observation Number = 31  Oxygen_Consumption = 39.44 
 Predicted Value = 40.227 
 Observation Number = 30  Oxygen_Consumption = 39.2 
 Predicted Value = 38.894 
 Observation Number = 29  Oxygen_Consumption = 39.41 
 Predicted Value = 39.269 
 Observation Number = 28  Oxygen_Consumption = 45.68 
 Predicted Value = 44.995 
 Observation Number = 27  Oxygen_Consumption = 44.81 
 Predicted Value = 43.038 
 Observation Number = 26  Oxygen_Consumption = 47.92 
 Predicted Value = 46.588 
 Observation Number = 25  Oxygen_Consumption = 44.61 
 Predicted Value = 44.587 
 Observation Number = 24  Oxygen_Consumption = 46.08 
 Predicted Value = 46.696 
 Observation Number = 23  Oxygen_Consumption = 44.75 
 Predicted Value = 45.64 
 Observation Number = 22  Oxygen_Consumption = 45.12 
 Predicted Value = 44.675 
 Observation Number = 21  Oxygen_Consumption = 40.84 
 Predicted Value = 46.332 
 Observation Number = 20  Oxygen_Consumption = 49.09 
 Predicted Value = 49.063 
 Observation Number = 19  Oxygen_Consumption = 47.27 
 Predicted Value = 47.2 
 Observation Number = 18  Oxygen_Consumption = 47.47 
 Predicted Value = 45.625 
 Observation Number = 17  Oxygen_Consumption = 45.79 
 Predicted Value = 45.335 
 Observation Number = 16  Oxygen_Consumption = 51.85 
 Predicted Value = 46.503 
 Observation Number = 15  Oxygen_Consumption = 46.77 
 Predicted Value = 47.014 
 Observation Number = 14  Oxygen_Consumption = 50.54 
 Predicted Value = 48.549 
 Observation Number = 13  Oxygen_Consumption = 50.39 
 Predicted Value = 47.597 
 Observation Number = 12  Oxygen_Consumption = 45.31 
 Predicted Value = 48.31 
 Observation Number = 11  Oxygen_Consumption = 46.67 
 Predicted Value = 49.28 
 Observation Number = 10  Oxygen_Consumption = 50.55 
 Predicted Value = 50.787 
 Observation Number = 9  Oxygen_Consumption = 45.44 
 Predicted Value = 48.825 
 Observation Number = 8  Oxygen_Consumption = 48.67 
 Predicted Value = 48.657 
 Observation Number = 7  Oxygen_Consumption = 49.87 
 Predicted Value = 51.061 
 Observation Number = 6  Oxygen_Consumption = 49.16 
 Predicted Value = 50.799 
 Observation Number = 5  Oxygen_Consumption = 54.63 
 Predicted Value = 54.864 
 Observation Number = 4  Oxygen_Consumption = 54.3 
 Predicted Value = 56.249 
 Observation Number = 3  Oxygen_Consumption = 60.06 
 Predicted Value = 57.974 
 Observation Number = 2  Oxygen_Consumption = 59.57 
 Predicted Value = 56.566 
 Observation Number = 1  Slope = 1 
 Y = 0  Cook's D = .00011 
 Observation Number = 31  Cook's D = 0.0062 
 Observation Number = 30  Cook's D = 0.0015 
 Observation Number = 29  Cook's D = .00021 
 Observation Number = 28  Cook's D = 0.0042 
 Observation Number = 27  Cook's D = 0.01 
 Observation Number = 26  Cook's D = 0.0245 
 Observation Number = 25  Cook's D = 2.5E-6 
 Observation Number = 24  Cook's D = 0.0032 
 Observation Number = 23  Cook's D = 0.0058 
 Observation Number = 22  Cook's D = .00094 
 Observation Number = 21  Cook's D = 0.0821 
 Observation Number = 20  Cook's D = 4E-6 
 Observation Number = 19  Cook's D = 2.3E-5 
 Observation Number = 18  Cook's D = 0.0135 
 Observation Number = 17  Cook's D = 0.0028 
 Observation Number = 16  Cook's D = 0.1546 
 Observation Number = 15  Cook's D = .00084 
 Observation Number = 14  Cook's D = 0.0273 
 Observation Number = 13  Cook's D = 0.0316 
 Observation Number = 12  Cook's D = 0.0846 
 Observation Number = 11  Cook's D = 0.0167 
 Observation Number = 10  Cook's D = 0.0013 
 Observation Number = 9  Cook's D = 0.0486 
 Observation Number = 8  Cook's D = 2.3E-6 
 Observation Number = 7  Cook's D = 0.0205 
 Observation Number = 6  Cook's D = 0.0343 
 Observation Number = 5  Cook's D = .00066 
 Observation Number = 4  Cook's D = 0.052 
 Observation Number = 3  Cook's D = 0.2535 
 Observation Number = 2  Cook's D = 0.0867 
 Observation Number = 1  Cook's D = .00011 
 Observation Number = 31  Cook's D = 0.0062 
 Observation Number = 30  Cook's D = 0.0015 
 Observation Number = 29  Cook's D = .00021 
 Observation Number = 28  Cook's D = 0.0042 
 Observation Number = 27  Cook's D = 0.01 
 Observation Number = 26  Cook's D = 0.0245 
 Observation Number = 25  Cook's D = 2.5E-6 
 Observation Number = 24  Cook's D = 0.0032 
 Observation Number = 23  Cook's D = 0.0058 
 Observation Number = 22  Cook's D = .00094 
 Observation Number = 21  Cook's D = 0.0821 
 Observation Number = 20  Cook's D = 4E-6 
 Observation Number = 19  Cook's D = 2.3E-5 
 Observation Number = 18  Cook's D = 0.0135 
 Observation Number = 17  Cook's D = 0.0028 
 Observation Number = 16  Cook's D = 0.1546 
 Observation Number = 15  Cook's D = .00084 
 Observation Number = 14  Cook's D = 0.0273 
 Observation Number = 13  Cook's D = 0.0316 
 Observation Number = 12  Cook's D = 0.0846 
 Observation Number = 11  Cook's D = 0.0167 
 Observation Number = 10  Cook's D = 0.0013 
 Observation Number = 9  Cook's D = 0.0486 
 Observation Number = 8  Cook's D = 2.3E-6 
 Observation Number = 7  Cook's D = 0.0205 
 Observation Number = 6  Cook's D = 0.0343 
 Observation Number = 5  Cook's D = .00066 
 Observation Number = 4  Cook's D = 0.052 
 Observation Number = 3  Cook's D = 0.2535 
 Observation Number = 2  Cook's D = 0.0867 
 Observation Number = 1  Y = 0.129  Residual = 6.2534 
 Percent = 0.5315  Residual = 6.1902 
 Percent = 0.5819  Residual = 6.1902 
 Percent = 0.5819  Residual = 6.127 
 Percent = 0.6364  Residual = 6.127 
 Percent = 0.6364  Residual = 6.0639 
 Percent = 0.6953  Residual = 6.0639 
 Percent = 0.6953  Residual = 6.0007 
 Percent = 0.759  Residual = 6.0007 
 Percent = 0.759  Residual = 5.9376 
 Percent = 0.8279  Residual = 5.9376 
 Percent = 0.8279  Residual = 5.8744 
 Percent = 0.9021  Residual = 5.8744 
 Percent = 0.9021  Residual = 5.8112 
 Percent = 0.982  Residual = 5.8112 
 Percent = 0.982  Residual = 5.7481 
 Percent = 1.0681  Residual = 5.7481 
 Percent = 1.0681  Residual = 5.6849 
 Percent = 1.1607  Residual = 5.6849 
 Percent = 1.1607  Residual = 5.6217 
 Percent = 1.2601  Residual = 5.6217 
 Percent = 1.2601  Residual = 5.5586 
 Percent = 1.3668  Residual = 5.5586 
 Percent = 1.3668  Residual = 5.4954 
 Percent = 1.4811  Residual = 5.4954 
 Percent = 1.4811  Residual = 5.4322 
 Percent = 1.6036  Residual = 5.4322 
 Percent = 1.6036  Residual = 5.3691 
 Percent = 1.7346  Residual = 5.3691 
 Percent = 1.7346  Residual = 5.3059 
 Percent = 1.8745  Residual = 5.3059 
 Percent = 1.8745  Residual = 5.2427 
 Percent = 2.0239  Residual = 5.2427 
 Percent = 2.0239  Residual = 5.1796 
 Percent = 2.1832  Residual = 5.1796 
 Percent = 2.1832  Residual = 5.1164 
 Percent = 2.3528  Residual = 5.1164 
 Percent = 2.3528  Residual = 5.0532 
 Percent = 2.5333  Residual = 5.0532 
 Percent = 2.5333  Residual = 4.9901 
 Percent = 2.7252  Residual = 4.9901 
 Percent = 2.7252  Residual = 4.9269 
 Percent = 2.9289  Residual = 4.9269 
 Percent = 2.9289  Residual = 4.8637 
 Percent = 3.1449  Residual = 4.8637 
 Percent = 3.1449  Residual = 4.8006 
 Percent = 3.3738  Residual = 4.8006 
 Percent = 3.3738  Residual = 4.7374 
 Percent = 3.616  Residual = 4.7374 
 Percent = 3.616  Residual = 4.6742 
 Percent = 3.872  Residual = 4.6742 
 Percent = 3.872  Residual = 4.6111 
 Percent = 4.1424  Residual = 4.6111 
 Percent = 4.1424  Residual = 4.5479 
 Percent = 4.4276  Residual = 4.5479 
 Percent = 4.4276  Residual = 4.4847 
 Percent = 4.728  Residual = 4.4847 
 Percent = 4.728  Residual = 4.4216 
 Percent = 5.0442  Residual = 4.4216 
 Percent = 5.0442  Residual = 4.3584 
 Percent = 5.3766  Residual = 4.3584 
 Percent = 5.3766  Residual = 4.2953 
 Percent = 5.7257  Residual = 4.2953 
 Percent = 5.7257  Residual = 4.2321 
 Percent = 6.0918  Residual = 4.2321 
 Percent = 6.0918  Residual = 4.1689 
 Percent = 6.4754  Residual = 4.1689 
 Percent = 6.4754  Residual = 4.1058 
 Percent = 6.8768  Residual = 4.1058 
 Percent = 6.8768  Residual = 4.0426 
 Percent = 7.2965  Residual = 4.0426 
 Percent = 7.2965  Residual = 3.9794 
 Percent = 7.7346  Residual = 3.9794 
 Percent = 7.7346  Residual = 3.9163 
 Percent = 8.1914  Residual = 3.9163 
 Percent = 8.1914  Residual = 3.8531 
 Percent = 8.6674  Residual = 3.8531 
 Percent = 8.6674  Residual = 3.7899 
 Percent = 9.1625  Residual = 3.7899 
 Percent = 9.1625  Residual = 3.7268 
 Percent = 9.6771  Residual = 3.7268 
 Percent = 9.6771  Residual = 3.6636 
 Percent = 10.211  Residual = 3.6636 
 Percent = 10.211  Residual = 3.6004 
 Percent = 10.765  Residual = 3.6004 
 Percent = 10.765  Residual = 3.5373 
 Percent = 11.338  Residual = 3.5373 
 Percent = 11.338  Residual = 3.4741 
 Percent = 11.931  Residual = 3.4741 
 Percent = 11.931  Residual = 3.4109 
 Percent = 12.543  Residual = 3.4109 
 Percent = 12.543  Residual = 3.2846 
 Percent = 13.825  Residual = 3.2846 
 Percent = 13.825  Residual = 3.1583 
 Percent = 15.183  Residual = 3.1583 
 Percent = 15.183  Residual = 3.0319 
 Percent = 16.613  Residual = 3.0319 
 Percent = 16.613  Residual = 2.9056 
 Percent = 18.11  Residual = 2.9056 
 Percent = 18.11  Residual = 2.7793 
 Percent = 19.671  Residual = 2.7793 
 Percent = 19.671  Residual = 1.8318 
 Percent = 32.521  Residual = 1.8318 
 Percent = 32.521  Residual = 1.6423 
 Percent = 35.08  Residual = 1.6423 
 Percent = 35.08  Residual = 1.516 
 Percent = 36.728  Residual = 1.516 
 Percent = 36.728  Residual = 1.3896 
 Percent = 38.313  Residual = 1.3896 
 Percent = 38.313  Residual = 1.2633 
 Percent = 39.82  Residual = 1.2633 
 Percent = 39.82  Residual = 1.2001 
 Percent = 40.539  Residual = 1.2001 
 Percent = 40.539  Residual = 1.137 
 Percent = 41.234  Residual = 1.137 
 Percent = 41.234  Residual = 1.0738 
 Percent = 41.902  Residual = 1.0738 
 Percent = 41.902  Residual = 1.0106 
 Percent = 42.541  Residual = 1.0106 
 Percent = 42.541  Residual = 0.9475 
 Percent = 43.151  Residual = 0.9475 
 Percent = 43.151  Residual = 0.8843 
 Percent = 43.729  Residual = 0.8843 
 Percent = 43.729  Residual = 0.8212 
 Percent = 44.275  Residual = 0.8212 
 Percent = 44.275  Residual = 0.758 
 Percent = 44.786  Residual = 0.758 
 Percent = 44.786  Residual = 0.6948 
 Percent = 45.262  Residual = 0.6948 
 Percent = 45.262  Residual = 0.6317 
 Percent = 45.7  Residual = 0.6317 
 Percent = 45.7  Residual = 0.5685 
 Percent = 46.1  Residual = 0.5685 
 Percent = 46.1  Residual = 0.5053 
 Percent = 46.462  Residual = 0.5053 
 Percent = 46.462  Residual = 0.4422 
 Percent = 46.783  Residual = 0.4422 
 Percent = 46.783  Residual = 0.379 
 Percent = 47.063  Residual = 0.379 
 Percent = 47.063  Residual = 0.3158 
 Percent = 47.301  Residual = 0.3158 
 Percent = 47.301  Residual = 0.2527 
 Percent = 47.497  Residual = 0.2527 
 Percent = 47.497  Residual = 0.1895 
 Percent = 47.65  Residual = 0.1895 
 Percent = 47.65  Residual = 0.1263 
 Percent = 47.759  Residual = 0.1263 
 Percent = 47.759  Residual = 0.0632 
 Percent = 47.825  Residual = 0.0632 
 Percent = 47.825  Residual = 49E-15 
 Percent = 47.847  Residual = 49E-15 
 Percent = 47.847  Residual = -0.063 
 Percent = 47.825  Residual = -0.063 
 Percent = 47.825  Residual = -0.126 
 Percent = 47.759  Residual = -0.126 
 Percent = 47.759  Residual = -0.189 
 Percent = 47.65  Residual = -0.189 
 Percent = 47.65  Residual = -0.253 
 Percent = 47.497  Residual = -0.253 
 Percent = 47.497  Residual = -0.316 
 Percent = 47.301  Residual = -0.316 
 Percent = 47.301  Residual = -0.379 
 Percent = 47.063  Residual = -0.379 
 Percent = 47.063  Residual = -0.442 
 Percent = 46.783  Residual = -0.442 
 Percent = 46.783  Residual = -0.505 
 Percent = 46.462  Residual = -0.505 
 Percent = 46.462  Residual = -0.568 
 Percent = 46.1  Residual = -0.568 
 Percent = 46.1  Residual = -0.632 
 Percent = 45.7  Residual = -0.632 
 Percent = 45.7  Residual = -0.695 
 Percent = 45.262  Residual = -0.695 
 Percent = 45.262  Residual = -0.758 
 Percent = 44.786  Residual = -0.758 
 Percent = 44.786  Residual = -0.821 
 Percent = 44.275  Residual = -0.821 
 Percent = 44.275  Residual = -0.884 
 Percent = 43.729  Residual = -0.884 
 Percent = 43.729  Residual = -0.947 
 Percent = 43.151  Residual = -0.947 
 Percent = 43.151  Residual = -1.011 
 Percent = 42.541  Residual = -1.011 
 Percent = 42.541  Residual = -1.074 
 Percent = 41.902  Residual = -1.074 
 Percent = 41.902  Residual = -1.137 
 Percent = 41.234  Residual = -1.137 
 Percent = 41.234  Residual = -1.2 
 Percent = 40.539  Residual = -1.2 
 Percent = 40.539  Residual = -1.263 
 Percent = 39.82  Residual = -1.263 
 Percent = 39.82  Residual = -1.39 
 Percent = 38.313  Residual = -1.39 
 Percent = 38.313  Residual = -1.516 
 Percent = 36.728  Residual = -1.516 
 Percent = 36.728  Residual = -2.274 
 Percent = 26.39  Residual = -2.274 
 Percent = 26.39  Residual = -2.527 
 Percent = 22.952  Residual = -2.527 
 Percent = 22.952  Residual = -2.716 
 Percent = 20.472  Residual = -2.716 
 Percent = 20.472  Residual = -2.842 
 Percent = 18.883  Residual = -2.842 
 Percent = 18.883  Residual = -2.969 
 Percent = 17.353  Residual = -2.969 
 Percent = 17.353  Residual = -3.095 
 Percent = 15.889  Residual = -3.095 
 Percent = 15.889  Residual = -3.221 
 Percent = 14.495  Residual = -3.221 
 Percent = 14.495  Residual = -3.348 
 Percent = 13.175  Residual = -3.348 
 Percent = 13.175  Residual = -3.411 
 Percent = 12.543  Residual = -3.411 
 Percent = 12.543  Residual = -3.474 
 Percent = 11.931  Residual = -3.474 
 Percent = 11.931  Residual = -3.537 
 Percent = 11.338  Residual = -3.537 
 Percent = 11.338  Residual = -3.6 
 Percent = 10.765  Residual = -3.6 
 Percent = 10.765  Residual = -3.664 
 Percent = 10.211  Residual = -3.664 
 Percent = 10.211  Residual = -3.727 
 Percent = 9.6771  Residual = -3.727 
 Percent = 9.6771  Residual = -3.79 
 Percent = 9.1625  Residual = -3.79 
 Percent = 9.1625  Residual = -3.853 
 Percent = 8.6674  Residual = -3.853 
 Percent = 8.6674  Residual = -3.916 
 Percent = 8.1914  Residual = -3.916 
 Percent = 8.1914  Residual = -3.979 
 Percent = 7.7346  Residual = -3.979 
 Percent = 7.7346  Residual = -4.043 
 Percent = 7.2965  Residual = -4.043 
 Percent = 7.2965  Residual = -4.106 
 Percent = 6.8768  Residual = -4.106 
 Percent = 6.8768  Residual = -4.169 
 Percent = 6.4754  Residual = -4.169 
 Percent = 6.4754  Residual = -4.232 
 Percent = 6.0918  Residual = -4.232 
 Percent = 6.0918  Residual = -4.295 
 Percent = 5.7257  Residual = -4.295 
 Percent = 5.7257  Residual = -4.358 
 Percent = 5.3766  Residual = -4.358 
 Percent = 5.3766  Residual = -4.422 
 Percent = 5.0442  Residual = -4.422 
 Percent = 5.0442  Residual = -4.485 
 Percent = 4.728  Residual = -4.485 
 Percent = 4.728  Residual = -4.548 
 Percent = 4.4276  Residual = -4.548 
 Percent = 4.4276  Residual = -4.611 
 Percent = 4.1424  Residual = -4.611 
 Percent = 4.1424  Residual = -4.674 
 Percent = 3.872  Residual = -4.674 
 Percent = 3.872  Residual = -4.737 
 Percent = 3.616  Residual = -4.737 
 Percent = 3.616  Residual = -4.801 
 Percent = 3.3738  Residual = -4.801 
 Percent = 3.3738  Residual = -4.864 
 Percent = 3.1449  Residual = -4.864 
 Percent = 3.1449  Residual = -4.927 
 Percent = 2.9289  Residual = -4.927 
 Percent = 2.9289  Residual = -4.99 
 Percent = 2.7252  Residual = -4.99 
 Percent = 2.7252  Residual = -5.053 
 Percent = 2.5333  Residual = -5.053 
 Percent = 2.5333  Residual = -5.116 
 Percent = 2.3528  Residual = -5.116 
 Percent = 2.3528  Residual = -5.18 
 Percent = 2.1832  Residual = -5.18 
 Percent = 2.1832  Residual = -5.243 
 Percent = 2.0239  Residual = -5.243 
 Percent = 2.0239  Residual = -5.306 
 Percent = 1.8745  Residual = -5.306 
 Percent = 1.8745  Residual = -5.369 
 Percent = 1.7346  Residual = -5.369 
 Percent = 1.7346  Residual = -5.432 
 Percent = 1.6036  Residual = -5.432 
 Percent = 1.6036  Residual = -5.495 
 Percent = 1.4811  Residual = -5.495 
 Percent = 1.4811  Residual = -5.559 
 Percent = 1.3668  Residual = -5.559 
 Percent = 1.3668  Residual = -5.622 
 Percent = 1.2601  Residual = -5.622 
 Percent = 1.2601  Residual = -5.685 
 Percent = 1.1607  Residual = -5.685 
 Percent = 1.1607  Residual = -5.748 
 Percent = 1.0681  Residual = -5.748 
 Percent = 1.0681  Residual = -5.811 
 Percent = 0.982  Residual = -5.811 
 Percent = 0.982  Residual = -5.874 
 Percent = 0.9021  Residual = -5.874 
 Percent = 0.9021  Residual = -5.938 
 Percent = 0.8279  Residual = -5.938 
 Percent = 0.8279  Residual = -6.001 
 Percent = 0.759  Residual = -6.001 
 Percent = 0.759  Residual = -6.064 
 Percent = 0.6953  Residual = -6.064 
 Percent = 0.6953  Residual = -6.127 
 Percent = 0.6364  Residual = -6.127 
 Percent = 0.6364  Residual = -6.19 
 Percent = 0.5819  Residual = -6.19 
 Percent = 0.5819  Residual = -6.253 
 Percent = 0.5315  Residual = 5 
 Percent = 3.2258  Residual = 5 
 Percent = 3.2258  Residual = 2.5 
 Percent = 22.581  Residual = 2.5 
 Percent = 22.581  Residual = 0 
 Percent = 54.839  Residual = 0 
 Percent = 54.839  Residual = -2.5 
 Percent = 16.129  Residual = -2.5 
 Percent = 16.129  Residual = -5 
 Percent = 3.2258  Residual = -5 
 Percent = 3.2258  Proportion Less = 0.98 
 Fit-Mean = 10.598  Proportion Less = 0.948 
 Fit-Mean = 9.19  Proportion Less = 0.916 
 Fit-Mean = 8.8734  Proportion Less = 0.884 
 Fit-Mean = 7.4886  Proportion Less = 0.852 
 Fit-Mean = 3.6854  Proportion Less = 0.82 
 Fit-Mean = 3.4234  Proportion Less = 0.788 
 Fit-Mean = 3.411  Proportion Less = 0.756 
 Fit-Mean = 1.9038  Proportion Less = 0.724 
 Fit-Mean = 1.6875  Proportion Less = 0.692 
 Fit-Mean = 1.4494  Proportion Less = 0.66 
 Fit-Mean = 1.2813  Proportion Less = 0.628 
 Fit-Mean = 1.1729  Proportion Less = 0.596 
 Fit-Mean = 0.9338  Proportion Less = 0.564 
 Fit-Mean = 0.2216  Proportion Less = 0.532 
 Fit-Mean = -0.176  Proportion Less = 0.5 
 Fit-Mean = -0.362  Proportion Less = 0.468 
 Fit-Mean = -0.68  Proportion Less = 0.436 
 Fit-Mean = -0.788  Proportion Less = 0.404 
 Fit-Mean = -0.873  Proportion Less = 0.372 
 Fit-Mean = -1.043  Proportion Less = 0.34 
 Fit-Mean = -1.736  Proportion Less = 0.308 
 Fit-Mean = -1.751  Proportion Less = 0.276 
 Fit-Mean = -2.04  Proportion Less = 0.244 
 Fit-Mean = -2.381  Proportion Less = 0.212 
 Fit-Mean = -2.701  Proportion Less = 0.18 
 Fit-Mean = -2.789  Proportion Less = 0.148 
 Fit-Mean = -4.338  Proportion Less = 0.116 
 Fit-Mean = -7.149  Proportion Less = 0.084 
 Fit-Mean = -8.107  Proportion Less = 0.052 
 Fit-Mean = -8.482  Proportion Less = 0.02 
 Fit-Mean = -9.925  Proportion Less = 0.98 
 Residual = 5.3469  Proportion Less = 0.948 
 Residual = 3.0042  Proportion Less = 0.916 
 Residual = 2.7926  Proportion Less = 0.884 
 Residual = 2.0865  Proportion Less = 0.852 
 Residual = 1.9912  Proportion Less = 0.82 
 Residual = 1.8454  Proportion Less = 0.788 
 Residual = 1.7719  Proportion Less = 0.756 
 Residual = 1.3319  Proportion Less = 0.724 
 Residual = 0.6852  Proportion Less = 0.692 
 Residual = 0.4546  Proportion Less = 0.66 
 Residual = 0.4454  Proportion Less = 0.628 
 Residual = 0.3057  Proportion Less = 0.596 
 Residual = 0.1415  Proportion Less = 0.564 
 Residual = 0.0699  Proportion Less = 0.532 
 Residual = 0.0267  Proportion Less = 0.5 
 Residual = 0.0229  Proportion Less = 0.468 
 Residual = 0.0128  Proportion Less = 0.436 
 Residual = -0.061  Proportion Less = 0.404 
 Residual = -0.234  Proportion Less = 0.372 
 Residual = -0.237  Proportion Less = 0.34 
 Residual = -0.244  Proportion Less = 0.308 
 Residual = -0.616  Proportion Less = 0.276 
 Residual = -0.787  Proportion Less = 0.244 
 Residual = -0.89  Proportion Less = 0.212 
 Residual = -1.191  Proportion Less = 0.18 
 Residual = -1.639  Proportion Less = 0.148 
 Residual = -1.949  Proportion Less = 0.116 
 Residual = -2.61  Proportion Less = 0.084 
 Residual = -3  Proportion Less = 0.052 
 Residual = -3.385  Proportion Less = 0.02 
 Residual = -5.492
 Residual = -0.061 
 RunTime = 14.03 
 Observation Number = 31  Residual = -0.787 
 RunTime = 13.08 
 Observation Number = 30  Residual = 0.3057 
 RunTime = 12.88 
 Observation Number = 29  Residual = 0.1415 
 RunTime = 12.63 
 Observation Number = 28  Residual = 0.6852 
 RunTime = 11.95 
 Observation Number = 27  Residual = 1.7719 
 RunTime = 11.63 
 Observation Number = 26  Residual = 1.3319 
 RunTime = 11.5 
 Observation Number = 25  Residual = 0.0229 
 RunTime = 11.37 
 Observation Number = 24  Residual = -0.616 
 RunTime = 11.17 
 Observation Number = 23  Residual = -0.89 
 RunTime = 11.12 
 Observation Number = 22  Residual = 0.4454 
 RunTime = 11.08 
 Observation Number = 21  Residual = -5.492 
 RunTime = 10.95 
 Observation Number = 20  Residual = 0.0267 
 RunTime = 10.85 
 Observation Number = 19  Residual = 0.0699 
 RunTime = 10.6 
 Observation Number = 18  Residual = 1.8454 
 RunTime = 10.5 
 Observation Number = 17  Residual = 0.4546 
 RunTime = 10.47 
 Observation Number = 16  Residual = 5.3469 
 RunTime = 10.33 
 Observation Number = 15  Residual = -0.244 
 RunTime = 10.25 
 Observation Number = 14  Residual = 1.9912 
 RunTime = 10.13 
 Observation Number = 13  Residual = 2.7926 
 RunTime = 10.08 
 Observation Number = 12  Residual = -3 
 RunTime = 10.07 
 Observation Number = 11  Residual = -2.61 
 RunTime = 10 
 Observation Number = 10  Residual = -0.237 
 RunTime = 9.93 
 Observation Number = 9  Residual = -3.385 
 RunTime = 9.63 
 Observation Number = 8  Residual = 0.0128 
 RunTime = 9.4 
 Observation Number = 7  Residual = -1.191 
 RunTime = 9.22 
 Observation Number = 6  Residual = -1.639 
 RunTime = 8.95 
 Observation Number = 5  Residual = -0.234 
 RunTime = 8.92 
 Observation Number = 4  Residual = -1.949 
 RunTime = 8.65 
 Observation Number = 3  Residual = 2.0865 
 RunTime = 8.63 
 Observation Number = 2  Residual = 3.0042 
 RunTime = 8.17 
 Observation Number = 1  Y = 0  Residual = -0.061 
 Age = 45 
 Observation Number = 31  Residual = -0.787 
 Age = 44 
 Observation Number = 30  Residual = 0.3057 
 Age = 54 
 Observation Number = 29  Residual = 0.1415 
 Age = 57 
 Observation Number = 28  Residual = 0.6852 
 Age = 40 
 Observation Number = 27  Residual = 1.7719 
 Age = 47 
 Observation Number = 26  Residual = 1.3319 
 Age = 48 
 Observation Number = 25  Residual = 0.0229 
 Age = 44 
 Observation Number = 24  Residual = -0.616 
 Age = 54 
 Observation Number = 23  Residual = -0.89 
 Age = 45 
 Observation Number = 22  Residual = 0.4454 
 Age = 51 
 Observation Number = 21  Residual = -5.492 
 Age = 51 
 Observation Number = 20  Residual = 0.0267 
 Age = 43 
 Observation Number = 19  Residual = 0.0699 
 Age = 47 
 Observation Number = 18  Residual = 1.8454 
 Age = 52 
 Observation Number = 17  Residual = 0.4546 
 Age = 52 
 Observation Number = 16  Residual = 5.3469 
 Age = 54 
 Observation Number = 15  Residual = -0.244 
 Age = 48 
 Observation Number = 14  Residual = 1.9912 
 Age = 44 
 Observation Number = 13  Residual = 2.7926 
 Age = 49 
 Observation Number = 12  Residual = -3 
 Age = 40 
 Observation Number = 11  Residual = -2.61 
 Age = 51 
 Observation Number = 10  Residual = -0.237 
 Age = 57 
 Observation Number = 9  Residual = -3.385 
 Age = 52 
 Observation Number = 8  Residual = 0.0128 
 Age = 49 
 Observation Number = 7  Residual = -1.191 
 Age = 38 
 Observation Number = 6  Residual = -1.639 
 Age = 49 
 Observation Number = 5  Residual = -0.234 
 Age = 50 
 Observation Number = 4  Residual = -1.949 
 Age = 43 
 Observation Number = 3  Residual = 2.0865 
 Age = 38 
 Observation Number = 2  Residual = 3.0042 
 Age = 42 
 Observation Number = 1  Y = 0  Residual = -0.061 
 Weight = 87.66 
 Observation Number = 31  Residual = -0.787 
 Weight = 81.42 
 Observation Number = 30  Residual = 0.3057 
 Weight = 91.63 
 Observation Number = 29  Residual = 0.1415 
 Weight = 73.37 
 Observation Number = 28  Residual = 0.6852 
 Weight = 75.98 
 Observation Number = 27  Residual = 1.7719 
 Weight = 77.45 
 Observation Number = 26  Residual = 1.3319 
 Weight = 61.24 
 Observation Number = 25  Residual = 0.0229 
 Weight = 89.47 
 Observation Number = 24  Residual = -0.616 
 Weight = 79.38 
 Observation Number = 23  Residual = -0.89 
 Weight = 66.45 
 Observation Number = 22  Residual = 0.4454 
 Weight = 67.25 
 Observation Number = 21  Residual = -5.492 
 Weight = 69.63 
 Observation Number = 20  Residual = 0.0267 
 Weight = 81.19 
 Observation Number = 19  Residual = 0.0699 
 Weight = 79.15 
 Observation Number = 18  Residual = 1.8454 
 Weight = 82.78 
 Observation Number = 17  Residual = 0.4546 
 Weight = 73.71 
 Observation Number = 16  Residual = 5.3469 
 Weight = 83.12 
 Observation Number = 15  Residual = -0.244 
 Weight = 91.63 
 Observation Number = 14  Residual = 1.9912 
 Weight = 73.03 
 Observation Number = 13  Residual = 2.7926 
 Weight = 73.37 
 Observation Number = 12  Residual = -3 
 Weight = 75.07 
 Observation Number = 11  Residual = -2.61 
 Weight = 77.91 
 Observation Number = 10  Residual = -0.237 
 Weight = 59.08 
 Observation Number = 9  Residual = -3.385 
 Weight = 76.32 
 Observation Number = 8  Residual = 0.0128 
 Weight = 76.32 
 Observation Number = 7  Residual = -1.191 
 Weight = 89.02 
 Observation Number = 6  Residual = -1.639 
 Weight = 81.42 
 Observation Number = 5  Residual = -0.234 
 Weight = 70.87 
 Observation Number = 4  Residual = -1.949 
 Weight = 85.84 
 Observation Number = 3  Residual = 2.0865 
 Weight = 81.87 
 Observation Number = 2  Residual = 3.0042 
 Weight = 68.15 
 Observation Number = 1  Y = 0  Residual = -0.061 
 Run_Pulse = 186 
 Observation Number = 31  Residual = -0.787 
 Run_Pulse = 174 
 Observation Number = 30  Residual = 0.3057 
 Run_Pulse = 168 
 Observation Number = 29  Residual = 0.1415 
 Run_Pulse = 174 
 Observation Number = 28  Residual = 0.6852 
 Run_Pulse = 176 
 Observation Number = 27  Residual = 1.7719 
 Run_Pulse = 176 
 Observation Number = 26  Residual = 1.3319 
 Run_Pulse = 170 
 Observation Number = 25  Residual = 0.0229 
 Run_Pulse = 178 
 Observation Number = 24  Residual = -0.616 
 Run_Pulse = 156 
 Observation Number = 23  Residual = -0.89 
 Run_Pulse = 176 
 Observation Number = 22  Residual = 0.4454 
 Run_Pulse = 172 
 Observation Number = 21  Residual = -5.492 
 Run_Pulse = 168 
 Observation Number = 20  Residual = 0.0267 
 Run_Pulse = 162 
 Observation Number = 19  Residual = 0.0699 
 Run_Pulse = 162 
 Observation Number = 18  Residual = 1.8454 
 Run_Pulse = 170 
 Observation Number = 17  Residual = 0.4546 
 Run_Pulse = 186 
 Observation Number = 16  Residual = 5.3469 
 Run_Pulse = 166 
 Observation Number = 15  Residual = -0.244 
 Run_Pulse = 162 
 Observation Number = 14  Residual = 1.9912 
 Run_Pulse = 168 
 Observation Number = 13  Residual = 2.7926 
 Run_Pulse = 168 
 Observation Number = 12  Residual = -3 
 Run_Pulse = 185 
 Observation Number = 11  Residual = -2.61 
 Run_Pulse = 162 
 Observation Number = 10  Residual = -0.237 
 Run_Pulse = 148 
 Observation Number = 9  Residual = -3.385 
 Run_Pulse = 164 
 Observation Number = 8  Residual = 0.0128 
 Run_Pulse = 186 
 Observation Number = 7  Residual = -1.191 
 Run_Pulse = 178 
 Observation Number = 6  Residual = -1.639 
 Run_Pulse = 180 
 Observation Number = 5  Residual = -0.234 
 Run_Pulse = 146 
 Observation Number = 4  Residual = -1.949 
 Run_Pulse = 156 
 Observation Number = 3  Residual = 2.0865 
 Run_Pulse = 170 
 Observation Number = 2  Residual = 3.0042 
 Run_Pulse = 166 
 Observation Number = 1  Y = 0  Residual = -0.061 
 Maximum_Pulse = 192 
 Observation Number = 31  Residual = -0.787 
 Maximum_Pulse = 176 
 Observation Number = 30  Residual = 0.3057 
 Maximum_Pulse = 172 
 Observation Number = 29  Residual = 0.1415 
 Maximum_Pulse = 176 
 Observation Number = 28  Residual = 0.6852 
 Maximum_Pulse = 180 
 Observation Number = 27  Residual = 1.7719 
 Maximum_Pulse = 176 
 Observation Number = 26  Residual = 1.3319 
 Maximum_Pulse = 176 
 Observation Number = 25  Residual = 0.0229 
 Maximum_Pulse = 182 
 Observation Number = 24  Residual = -0.616 
 Maximum_Pulse = 165 
 Observation Number = 23  Residual = -0.89 
 Maximum_Pulse = 176 
 Observation Number = 22  Residual = 0.4454 
 Maximum_Pulse = 172 
 Observation Number = 21  Residual = -5.492 
 Maximum_Pulse = 172 
 Observation Number = 20  Residual = 0.0267 
 Maximum_Pulse = 170 
 Observation Number = 19  Residual = 0.0699 
 Maximum_Pulse = 164 
 Observation Number = 18  Residual = 1.8454 
 Maximum_Pulse = 172 
 Observation Number = 17  Residual = 0.4546 
 Maximum_Pulse = 188 
 Observation Number = 16  Residual = 5.3469 
 Maximum_Pulse = 170 
 Observation Number = 15  Residual = -0.244 
 Maximum_Pulse = 164 
 Observation Number = 14  Residual = 1.9912 
 Maximum_Pulse = 168 
 Observation Number = 13  Residual = 2.7926 
 Maximum_Pulse = 168 
 Observation Number = 12  Residual = -3 
 Maximum_Pulse = 185 
 Observation Number = 11  Residual = -2.61 
 Maximum_Pulse = 168 
 Observation Number = 10  Residual = -0.237 
 Maximum_Pulse = 155 
 Observation Number = 9  Residual = -3.385 
 Maximum_Pulse = 166 
 Observation Number = 8  Residual = 0.0128 
 Maximum_Pulse = 188 
 Observation Number = 7  Residual = -1.191 
 Maximum_Pulse = 180 
 Observation Number = 6  Residual = -1.639 
 Maximum_Pulse = 185 
 Observation Number = 5  Residual = -0.234 
 Maximum_Pulse = 155 
 Observation Number = 4  Residual = -1.949 
 Maximum_Pulse = 168 
 Observation Number = 3  Residual = 2.0865 
 Maximum_Pulse = 186 
 Observation Number = 2  Residual = 3.0042 
 Maximum_Pulse = 172 
 Observation Number = 1  Y = 0

Stepwise selection methods

Stepwise selection methods include forward, backward, and stepwise approaches. In this course, you use these methods to select variables based on their p-values, and we will discuss other methods as well. Let's look at each of these three methods in detail.

Forward selection starts with no predictor variables in the model. It selects the best one-variable model (the most significant variable when run by itself). Then it selects the best two-variable model that includes the variable in the first model. So, after a variable is added to the model, it stays in, even if it becomes insignificant later. Forward selection keeps adding variables, one at a time, until no significant terms are left to add.

Backward selection, also called backward elimination, starts with all predictor variables in the model. It removes variables one at a time, starting with the most non-significant variable. After a variable is removed from the model, it cannot reenter. Backward selection stops when only significant terms are left in the model.

Using automated model selection results in biases in parameter estimates, predictions, and standard errors, incorrect calculation of degrees of freedom, and p-values that tend to err on the side of overestimating significance.

So, how can you avoid these issues? One way is to hold out some of your data in order to perform an honest assessment of how well your model performs on a different sample of data than you used to develop the model. You split your data into two data sets: the training data and the holdout data, which is also called the validation data. You use the training data to build your model, and you use the holdout data to assess and compare potential models.

Other honest assessment approaches include cross-validation or bootstrapping. You might choose to perform cross-validation if your data set isn’t large enough to split and hold out some data for validation. Alternatively, you can use a bootstrapping method to obtain correct standard errors and p-values. Bootstrapping is a resampling method that tries to approximate the distribution of the parameter estimates to estimate the standard error.

One last thing to keep in mind is that the stepwise techniques don’t take any any collinearity in your model into account. Collinearity means that predictor variables in the same model are highly correlated. If collinearity is present in your model, you might want to consider first reducing the collinearity as much as possible and then running stepwise methods on the remaining variables.


In [14]:
%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area 
              Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom ;

ods graphics on;

proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISE: model SalePrice=&interval / selection=stepwise showpvales
                   details=steps select=SL slstay=0.05 slentry=0.05;
   title "Stepwise Model Selection for SalePrice - SL 0.05";
run;

/*Optional code that will execute forward and backward selection, each with slentry and slstay = 0.05.
proc glmselect data=statdata.ameshousing3 plots=all;
   FORWARD: model SalePrice=&interval / selection=forward details=steps select=SL slentry=0.05;
   title "Forward Model Selection for SalePrice - SL 0.05";
run;

proc glmselect data=statdata.ameshousing3 plots=all;
   BACKWARD: model SalePrice=&interval / selection=backward details=steps select=SL slstay=0.05;
   title "Backward Model Selection for SalePrice - SL 0.05";
run;
*/


Out[14]:
SAS Output

Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Data Set STATDATA.AMESHOUSING3
Dependent Variable SalePrice
Selection Method Stepwise
Select Criterion Significance Level
Stop Criterion Significance Level
Entry Significance Level (SLE) 0.05
Stay Significance Level (SLS) 0.05
Effect Hierarchy Enforced None
Number of Observations Read 300
Number of Observations Used 300
Dimensions
Number of Effects 9
Number of Parameters 9

Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 0

Effect Entered: Intercept

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 0 0 . . .
Error 299 4.232235E11 1415463276    
Corrected Total 299 4.232235E11      
Root MSE 37623
Dependent Mean 137525
R-Square 0.0000
Adj R-Sq 0.0000
AIC 6624.21515
AICC 6624.25555
SBC 6325.91893
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 137525 2172.144314 63.31 <.0001


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 1

Effect Entered: Basement_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 1 2.012418E11 2.012418E11 270.16 <.0001
Error 298 2.219817E11 744904950    
Corrected Total 299 4.232235E11      
Root MSE 27293
Dependent Mean 137525
R-Square 0.4755
Adj R-Sq 0.4737
AIC 6432.62346
AICC 6432.70454
SBC 6138.03102
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 73904 4179.193780 17.68 <.0001
Basement_Area 1 72.107717 4.387055 16.44 <.0001
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Basement_Area -98.8577 <.0001
2 Gr_Liv_Area -84.6132 <.0001
3 Age_Sold -73.5219 <.0001
4 Total_Bathroom -69.1880 <.0001
5 Garage_Area -63.3558 <.0001
6 Deck_Porch_Area -34.3105 <.0001
7 Lot_Area -11.6303 <.0001
8 Bedroom_AbvGr -5.5339 0.0040
 Y = -103.5  Effect = Bedroom_AbvGr 
 log(p-value) = -5.534  Effect = Lot_Area 
 log(p-value) = -11.63  Effect = Deck_Porch_Area 
 log(p-value) = -34.31  Effect = Garage_Area 
 log(p-value) = -63.36  Effect = Total_Bathroom 
 log(p-value) = -69.19  Effect = Age_Sold 
 log(p-value) = -73.52  Effect = Gr_Liv_Area 
 log(p-value) = -84.61  Effect = Basement_Area 
 log(p-value) = -98.86


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 2

Effect Entered: Gr_Liv_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 2 2.64483E11 1.322415E11 247.42 <.0001
Error 297 1.587405E11 534479711    
Corrected Total 299 4.232235E11      
Root MSE 23119
Dependent Mean 137525
R-Square 0.6249
Adj R-Sq 0.6224
AIC 6334.02620
AICC 6334.16179
SBC 6043.13755
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 12664 6650.339855 1.90 0.0578
Gr_Liv_Area 1 69.606974 6.399091 10.88 <.0001
Basement_Area 1 52.309702 4.137885 12.64 <.0001
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Gr_Liv_Area -52.2496 <.0001
2 Age_Sold -48.2636 <.0001
3 Garage_Area -43.6174 <.0001
4 Total_Bathroom -31.0375 <.0001
5 Deck_Porch_Area -16.3568 <.0001
6 Lot_Area -2.2708 0.1032
7 Bedroom_AbvGr -0.7570 0.4691
 Y = -54.82  Effect = Bedroom_AbvGr 
 log(p-value) = -0.757  Effect = Lot_Area 
 log(p-value) = -2.271  Effect = Deck_Porch_Area 
 log(p-value) = -16.36  Effect = Total_Bathroom 
 log(p-value) = -31.04  Effect = Garage_Area 
 log(p-value) = -43.62  Effect = Age_Sold 
 log(p-value) = -48.26  Effect = Gr_Liv_Area 
 log(p-value) = -52.25


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 3

Effect Entered: Age_Sold

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 3 3.207148E11 1.069049E11 308.69 <.0001
Error 296 1.025087E11 346313132    
Corrected Total 299 4.232235E11      
Root MSE 18609
Dependent Mean 137525
R-Square 0.7578
Adj R-Sq 0.7553
AIC 6204.82927
AICC 6205.03335
SBC 5917.64440
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 53400 6235.076995 8.56 <.0001
Gr_Liv_Area 1 68.106646 5.152294 13.22 <.0001
Basement_Area 1 36.329120 3.559067 10.21 <.0001
Age_Sold 1 -543.493346 42.651840 -12.74 <.0001
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Age_Sold -67.2828 <.0001
2 Garage_Area -37.5122 <.0001
3 Total_Bathroom -21.6266 <.0001
4 Deck_Porch_Area -12.5097 <.0001
5 Bedroom_AbvGr -12.4446 <.0001
6 Lot_Area -0.4524 0.6361
 Y = -70.62  Effect = Lot_Area 
 log(p-value) = -0.452  Effect = Bedroom_AbvGr 
 log(p-value) = -12.44  Effect = Deck_Porch_Area 
 log(p-value) = -12.51  Effect = Total_Bathroom 
 log(p-value) = -21.63  Effect = Garage_Area 
 log(p-value) = -37.51  Effect = Age_Sold 
 log(p-value) = -67.28


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 4

Effect Entered: Garage_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 4 3.33571E11 83392754480 274.40 <.0001
Error 295 89652501590 303906785    
Corrected Total 299 4.232235E11      
Root MSE 17433
Dependent Mean 137525
R-Square 0.7882
Adj R-Sq 0.7853
AIC 6166.62734
AICC 6166.91403
SBC 5883.14625
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 43815 6023.907004 7.27 <.0001
Gr_Liv_Area 1 61.238136 4.940722 12.39 <.0001
Basement_Area 1 33.430181 3.363709 9.94 <.0001
Garage_Area 1 42.984492 6.608851 6.50 <.0001
Age_Sold 1 -455.704354 42.173481 -10.81 <.0001
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Garage_Area -21.8203 <.0001
2 Deck_Porch_Area -12.9294 <.0001
3 Bedroom_AbvGr -7.8057 0.0004
4 Total_Bathroom -3.8856 0.0205
5 Lot_Area -3.6980 0.0248
 Y = -22.73  Effect = Lot_Area 
 log(p-value) = -3.698  Effect = Total_Bathroom 
 log(p-value) = -3.886  Effect = Bedroom_AbvGr 
 log(p-value) = -7.806  Effect = Deck_Porch_Area 
 log(p-value) = -12.93  Effect = Garage_Area 
 log(p-value) = -21.82


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 5

Effect Entered: Deck_Porch_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 5 3.392788E11 67855752389 237.65 <.0001
Error 294 83944757568 285526386    
Corrected Total 299 4.232235E11      
Root MSE 16898
Dependent Mean 137525
R-Square 0.8017
Adj R-Sq 0.7983
AIC 6148.89269
AICC 6149.27625
SBC 5869.11538
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 46009 5859.485517 7.85 <.0001
Gr_Liv_Area 1 58.386514 4.831268 12.09 <.0001
Basement_Area 1 30.554240 3.323249 9.19 <.0001
Garage_Area 1 40.158112 6.436997 6.24 <.0001
Deck_Porch_Area 1 35.720258 7.989240 4.47 <.0001
Age_Sold 1 -447.254040 40.921927 -10.93 <.0001
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Deck_Porch_Area -11.4060 <.0001
2 Bedroom_AbvGr -6.2737 0.0019
3 Total_Bathroom -3.1045 0.0448
4 Lot_Area -1.9476 0.1426
 Y = -11.88  Effect = Lot_Area 
 log(p-value) = -1.948  Effect = Total_Bathroom 
 log(p-value) = -3.105  Effect = Bedroom_AbvGr 
 log(p-value) = -6.274  Effect = Deck_Porch_Area 
 log(p-value) = -11.41


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 6

Effect Entered: Bedroom_AbvGr

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 6 3.410749E11 56845818595 202.75 <.0001
Error 293 82148607939 280370676    
Corrected Total 299 4.232235E11      
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 48620 5897.324643 8.24 <.0001
Gr_Liv_Area 1 65.097413 5.472624 11.90 <.0001
Basement_Area 1 31.279351 3.305546 9.46 <.0001
Garage_Area 1 38.728785 6.403565 6.05 <.0001
Deck_Porch_Area 1 32.487956 8.019119 4.05 <.0001
Age_Sold 1 -434.199118 40.877494 -10.62 <.0001
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53 0.0119
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Bedroom_AbvGr -4.4317 0.0119
2 Total_Bathroom -2.5664 0.0768
3 Lot_Area -2.1476 0.1168
 Y = -4.546  Effect = Lot_Area 
 log(p-value) = -2.148  Effect = Total_Bathroom 
 log(p-value) = -2.566  Effect = Bedroom_AbvGr 
 log(p-value) = -4.432


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection: Step 7

Effect Entered: Lot_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 7 3.424508E11 48921543221 176.86 <.0001
Error 292 80772716963 276618894    
Corrected Total 299 4.232235E11      
Root MSE 16632
Dependent Mean 137525
R-Square 0.8091
Adj R-Sq 0.8046
AIC 6141.33678
AICC 6141.95747
SBC 5868.96704
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 47463 5880.674041 8.07 <.0001
Gr_Liv_Area 1 65.303724 5.436672 12.01 <.0001
Basement_Area 1 29.849078 3.345400 8.92 <.0001
Garage_Area 1 36.309606 6.452405 5.63 <.0001
Deck_Porch_Area 1 32.052554 7.967677 4.02 <.0001
Lot_Area 1 0.708127 0.317512 2.23 0.0265
Age_Sold 1 -447.198682 41.019314 -10.90 <.0001
Bedroom_AbvGr 1 -5042.766498 1687.928168 -2.99 0.0031
Entry Candidates
Rank Effect Log
pValue
Pr > F
1 Lot_Area -3.6309 0.0265
2 Total_Bathroom -2.2036 0.1104
 Y = -3.702  Effect = Total_Bathroom 
 log(p-value) = -2.204  Effect = Lot_Area 
 log(p-value) = -3.631


Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Stepwise Selection Summary
Step Effect
Entered
Effect
Removed
Number
Effects In
F Value Pr > F
0 Intercept   1 0.00 1.0000
1 Basement_Area   2 270.16 <.0001
2 Gr_Liv_Area   3 118.32 <.0001
3 Age_Sold   4 162.37 <.0001
4 Garage_Area   5 42.30 <.0001
5 Deck_Porch_Area   6 19.99 <.0001
6 Bedroom_AbvGr   7 6.41 0.0119
7 Lot_Area   8 4.97 0.0265
Selection stopped because the candidate for entry has SLE > 0.05 and the candidate for removal has SLS < 0.05.
Stop Details
Candidate
For
Effect Candidate
Significance
  Compare
Significance
 
Entry Total_Bathroom 0.1167 > 0.0500 (SLE)
Removal Lot_Area 0.0265 < 0.0500 (SLS)
 Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Age_Sold 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Lot_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Deck_Porch_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Garage_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 0 
 Parameter = Basement_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Gr_Liv_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Y = 0  X = 7+Lot_Area  Y = 0  Step = 7 
 Effect Sequence = 7+Lot_Area 
 p-value = 0.0265  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 p-value = 0.0119  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 p-value = 1.1E-5  Step = 4 
 Effect Sequence = 4+Garage_Area 
 p-value = 33E-11  Step = 3 
 Effect Sequence = 3+Age_Sold 
 p-value = 6E-30  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 p-value = 2E-23  Step = 1 
 Effect Sequence = 1+Basement_Area 
 p-value = 12E-44  Step = 7 
 Effect Sequence = 7+Lot_Area 
 p-value = 0.0265  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 p-value = 0.0119  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 p-value = 1.1E-5  Step = 4 
 Effect Sequence = 4+Garage_Area 
 p-value = 33E-11  Step = 3 
 Effect Sequence = 3+Age_Sold 
 p-value = 6E-30  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 p-value = 2E-23  Step = 1 
 Effect Sequence = 1+Basement_Area 
 p-value = 12E-44  X = 7+Lot_Area
 Optimal Step = 7+Lot_Area 
 Optimal Value = 6141.3  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  X = 7+Lot_Area  Optimal Step = 7+Lot_Area 
 Optimal Value = 6142  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  X = 7+Lot_Area  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 5868.3  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  X = 7+Lot_Area  Optimal Step = 7+Lot_Area 
 Optimal Value = 0.8046  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  X = 7+Lot_Area
 Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  X = 7+Lot_Area

Stepwise Model Selection for SalePrice - SL 0.05

The GLMSELECT Procedure

Selected Model

The selected model is the model at the last step (Step 7).

Effects: Intercept Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr

Note:The p-values for parameters and effects are not adjusted for the fact that the terms in the model have been selected and so are generally liberal.

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 7 3.424508E11 48921543221 176.86 <.0001
Error 292 80772716963 276618894    
Corrected Total 299 4.232235E11      
Root MSE 16632
Dependent Mean 137525
R-Square 0.8091
Adj R-Sq 0.8046
AIC 6141.33678
AICC 6141.95747
SBC 5868.96704
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value Pr > |t|
Intercept 1 47463 5880.674041 8.07 <.0001
Gr_Liv_Area 1 65.303724 5.436672 12.01 <.0001
Basement_Area 1 29.849078 3.345400 8.92 <.0001
Garage_Area 1 36.309606 6.452405 5.63 <.0001
Deck_Porch_Area 1 32.052554 7.967677 4.02 <.0001
Lot_Area 1 0.708127 0.317512 2.23 0.0265
Age_Sold 1 -447.198682 41.019314 -10.90 <.0001
Bedroom_AbvGr 1 -5042.766498 1687.928168 -2.99 0.0031

In [15]:
%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area 
              Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom ;

ods graphics on;
proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISEAIC: model SalePrice = &interval / selection=stepwise details=steps select=AIC;
   title "Stepwise Model Selection for SalePrice - AIC";
run;

proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISEBIC: model SalePrice = &interval / selection=stepwise details=steps select=BIC;
   title "Stepwise Model Selection for SalePrice - BIC";
run;

proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISEAICC: model SalePrice = &interval / selection=stepwise details=steps select=AICC;
   title "Stepwise Model Selection for SalePrice - AICC";
run;

proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISESBC: model SalePrice = &interval / selection=stepwise details=steps select=SBC;
   title "Stepwise Model Selection for SalePrice - SBC";
run;


Out[15]:
SAS Output

Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Data Set STATDATA.AMESHOUSING3
Dependent Variable SalePrice
Selection Method Stepwise
Select Criterion AIC
Stop Criterion AIC
Effect Hierarchy Enforced None
Number of Observations Read 300
Number of Observations Used 300
Dimensions
Number of Effects 9
Number of Parameters 9

Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 0

Effect Entered: Intercept

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 0 0 . .
Error 299 4.232235E11 1415463276  
Corrected Total 299 4.232235E11    
Root MSE 37623
Dependent Mean 137525
R-Square 0.0000
Adj R-Sq 0.0000
AIC 6624.21515
AICC 6624.25555
SBC 6325.91893
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 137525 2172.144314 63.31


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 1

Effect Entered: Basement_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 1 2.012418E11 2.012418E11 270.16
Error 298 2.219817E11 744904950  
Corrected Total 299 4.232235E11    
Root MSE 27293
Dependent Mean 137525
R-Square 0.4755
Adj R-Sq 0.4737
AIC 6432.62346
AICC 6432.70454
SBC 6138.03102
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 73904 4179.193780 17.68
Basement_Area 1 72.107717 4.387055 16.44
Entry Candidates
Rank Effect AIC
1 Basement_Area 6432.6235
2 Gr_Liv_Area 6461.1877
3 Age_Sold 6483.4097
4 Total_Bathroom 6492.0868
5 Garage_Area 6503.7574
6 Deck_Porch_Area 6561.6989
7 Lot_Area 6606.3138
8 Bedroom_AbvGr 6617.8389
 Y = 6423.4  Effect = Bedroom_AbvGr 
 AIC = 6617.8  Effect = Lot_Area 
 AIC = 6606.3  Effect = Deck_Porch_Area 
 AIC = 6561.7  Effect = Garage_Area 
 AIC = 6503.8  Effect = Total_Bathroom 
 AIC = 6492.1  Effect = Age_Sold 
 AIC = 6483.4  Effect = Gr_Liv_Area 
 AIC = 6461.2  Effect = Basement_Area 
 AIC = 6432.6


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 2

Effect Entered: Gr_Liv_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 2 2.64483E11 1.322415E11 247.42
Error 297 1.587405E11 534479711  
Corrected Total 299 4.232235E11    
Root MSE 23119
Dependent Mean 137525
R-Square 0.6249
Adj R-Sq 0.6224
AIC 6334.02620
AICC 6334.16179
SBC 6043.13755
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 12664 6650.339855 1.90
Gr_Liv_Area 1 69.606974 6.399091 10.88
Basement_Area 1 52.309702 4.137885 12.64
Entry Candidates
Rank Effect AIC
1 Gr_Liv_Area 6334.0262
2 Age_Sold 6342.0095
3 Garage_Area 6351.3061
4 Total_Bathroom 6376.4084
5 Deck_Porch_Area 6405.4472
6 Lot_Area 6431.9372
7 Bedroom_AbvGr 6434.0931
 Y = 6329  Effect = Bedroom_AbvGr 
 AIC = 6434.1  Effect = Lot_Area 
 AIC = 6431.9  Effect = Deck_Porch_Area 
 AIC = 6405.4  Effect = Total_Bathroom 
 AIC = 6376.4  Effect = Garage_Area 
 AIC = 6351.3  Effect = Age_Sold 
 AIC = 6342  Effect = Gr_Liv_Area 
 AIC = 6334


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 3

Effect Entered: Age_Sold

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 3 3.207148E11 1.069049E11 308.69
Error 296 1.025087E11 346313132  
Corrected Total 299 4.232235E11    
Root MSE 18609
Dependent Mean 137525
R-Square 0.7578
Adj R-Sq 0.7553
AIC 6204.82927
AICC 6205.03335
SBC 5917.64440
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 53400 6235.076995 8.56
Gr_Liv_Area 1 68.106646 5.152294 13.22
Basement_Area 1 36.329120 3.559067 10.21
Age_Sold 1 -543.493346 42.651840 -12.74
Entry Candidates
Rank Effect AIC
1 Age_Sold 6204.8293
2 Garage_Area 6264.6656
3 Total_Bathroom 6296.3441
4 Deck_Porch_Area 6314.2811
5 Bedroom_AbvGr 6314.4078
6 Lot_Area 6335.7989
 Y = 6198.3  Effect = Lot_Area 
 AIC = 6335.8  Effect = Bedroom_AbvGr 
 AIC = 6314.4  Effect = Deck_Porch_Area 
 AIC = 6314.3  Effect = Total_Bathroom 
 AIC = 6296.3  Effect = Garage_Area 
 AIC = 6264.7  Effect = Age_Sold 
 AIC = 6204.8


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 4

Effect Entered: Garage_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 4 3.33571E11 83392754480 274.40
Error 295 89652501590 303906785  
Corrected Total 299 4.232235E11    
Root MSE 17433
Dependent Mean 137525
R-Square 0.7882
Adj R-Sq 0.7853
AIC 6166.62734
AICC 6166.91403
SBC 5883.14625
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 43815 6023.907004 7.27
Gr_Liv_Area 1 61.238136 4.940722 12.39
Basement_Area 1 33.430181 3.363709 9.94
Garage_Area 1 42.984492 6.608851 6.50
Age_Sold 1 -455.704354 42.173481 -10.81
Entry Candidates
Rank Effect AIC
1 Garage_Area 6166.6273
2 Deck_Porch_Area 6184.1900
3 Bedroom_AbvGr 6194.0980
4 Total_Bathroom 6201.3633
5 Lot_Area 6201.6954
 Y = 6164.9  Effect = Lot_Area 
 AIC = 6201.7  Effect = Total_Bathroom 
 AIC = 6201.4  Effect = Bedroom_AbvGr 
 AIC = 6194.1  Effect = Deck_Porch_Area 
 AIC = 6184.2  Effect = Garage_Area 
 AIC = 6166.6


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 5

Effect Entered: Deck_Porch_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 5 3.392788E11 67855752389 237.65
Error 294 83944757568 285526386  
Corrected Total 299 4.232235E11    
Root MSE 16898
Dependent Mean 137525
R-Square 0.8017
Adj R-Sq 0.7983
AIC 6148.89269
AICC 6149.27625
SBC 5869.11538
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 46009 5859.485517 7.85
Gr_Liv_Area 1 58.386514 4.831268 12.09
Basement_Area 1 30.554240 3.323249 9.19
Garage_Area 1 40.158112 6.436997 6.24
Deck_Porch_Area 1 35.720258 7.989240 4.47
Age_Sold 1 -447.254040 40.921927 -10.93
Entry Candidates
Rank Effect AIC
1 Deck_Porch_Area 6148.8927
2 Bedroom_AbvGr 6158.7554
3 Total_Bathroom 6164.5138
4 Lot_Area 6166.4302
 Y = 6148  Effect = Lot_Area 
 AIC = 6166.4  Effect = Total_Bathroom 
 AIC = 6164.5  Effect = Bedroom_AbvGr 
 AIC = 6158.8  Effect = Deck_Porch_Area 
 AIC = 6148.9


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 6

Effect Entered: Bedroom_AbvGr

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 6 3.410749E11 56845818595 202.75
Error 293 82148607939 280370676  
Corrected Total 299 4.232235E11    
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 48620 5897.324643 8.24
Gr_Liv_Area 1 65.097413 5.472624 11.90
Basement_Area 1 31.279351 3.305546 9.46
Garage_Area 1 38.728785 6.403565 6.05
Deck_Porch_Area 1 32.487956 8.019119 4.05
Age_Sold 1 -434.199118 40.877494 -10.62
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53
Entry Candidates
Rank Effect AIC
1 Bedroom_AbvGr 6144.4040
2 Total_Bathroom 6147.6813
3 Lot_Area 6148.3694
 Y = 6144.2  Effect = Lot_Area 
 AIC = 6148.4  Effect = Total_Bathroom 
 AIC = 6147.7  Effect = Bedroom_AbvGr 
 AIC = 6144.4


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 7

Effect Entered: Lot_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 7 3.424508E11 48921543221 176.86
Error 292 80772716963 276618894  
Corrected Total 299 4.232235E11    
Root MSE 16632
Dependent Mean 137525
R-Square 0.8091
Adj R-Sq 0.8046
AIC 6141.33678
AICC 6141.95747
SBC 5868.96704
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 47463 5880.674041 8.07
Gr_Liv_Area 1 65.303724 5.436672 12.01
Basement_Area 1 29.849078 3.345400 8.92
Garage_Area 1 36.309606 6.452405 5.63
Deck_Porch_Area 1 32.052554 7.967677 4.02
Lot_Area 1 0.708127 0.317512 2.23
Age_Sold 1 -447.198682 41.019314 -10.90
Bedroom_AbvGr 1 -5042.766498 1687.928168 -2.99
Entry Candidates
Rank Effect AIC
1 Lot_Area 6141.3368
2 Total_Bathroom 6143.7813
 Y = 6141.2  Effect = Total_Bathroom 
 AIC = 6143.8  Effect = Lot_Area 
 AIC = 6141.3


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection: Step 8

Effect Entered: Total_Bathroom

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57
Entry Candidates
Rank Effect AIC
1 Total_Bathroom 6140.7956
 Y = 6140.8  Effect = Total_Bathroom 
 AIC = 6140.8


Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Stepwise Selection Summary
Step Effect
Entered
Effect
Removed
Number
Effects In
AIC
* Optimal Value of Criterion
0 Intercept   1 6624.2151
1 Basement_Area   2 6432.6235
2 Gr_Liv_Area   3 6334.0262
3 Age_Sold   4 6204.8293
4 Garage_Area   5 6166.6273
5 Deck_Porch_Area   6 6148.8927
6 Bedroom_AbvGr   7 6144.4040
7 Lot_Area   8 6141.3368
8 Total_Bathroom   9 6140.7956*
Selection stopped because all effects are in the final model.
 Step = 8 
 Parameter = Total_Bathroom 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0528  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Total_Bathroom 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.089  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Age_Sold 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.307  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Age_Sold 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Lot_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0618  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Lot_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1106  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Deck_Porch_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Garage_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1675  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Garage_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Basement_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.2744  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 0 
 Parameter = Basement_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.3908  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Gr_Liv_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Y = 0  X = 8+Total_Bathroom  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.8  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.9  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.8  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.9  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.9  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2  X = 8+Total_Bathroom
 Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6140.8  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6141.6  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  X = 8+Total_Bathroom  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 5868.3  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 0.8056  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  X = 8+Total_Bathroom
 Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  X = 8+Total_Bathroom

Stepwise Model Selection for SalePrice - AIC

The GLMSELECT Procedure

Selected Model

The selected model is the model at the last step (Step 8).

Effects: Intercept Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57

Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Data Set STATDATA.AMESHOUSING3
Dependent Variable SalePrice
Selection Method Stepwise
Select Criterion BIC
Stop Criterion BIC
Effect Hierarchy Enforced None
Number of Observations Read 300
Number of Observations Used 300
Dimensions
Number of Effects 9
Number of Parameters 9

Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 0

Effect Entered: Intercept

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 0 0 . .
Error 299 4.232235E11 1415463276  
Corrected Total 299 4.232235E11    
Root MSE 37623
Dependent Mean 137525
R-Square 0.0000
Adj R-Sq 0.0000
AIC 6624.21515
AICC 6624.25555
BIC 6321.30959
C(p) 1239.71831
SBC 6325.91893
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 137525 2172.144314 63.31


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 1

Effect Entered: Basement_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 1 2.012418E11 2.012418E11 270.16
Error 298 2.219817E11 744904950  
Corrected Total 299 4.232235E11    
Root MSE 27293
Dependent Mean 137525
R-Square 0.4755
Adj R-Sq 0.4737
AIC 6432.62346
AICC 6432.70454
BIC 6129.32244
C(p) 510.53666
SBC 6138.03102
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 73904 4179.193780 17.68
Basement_Area 1 72.107717 4.387055 16.44
Entry Candidates
Rank Effect BIC
1 Basement_Area 6129.3224
2 Gr_Liv_Area 6157.6644
3 Age_Sold 6179.7247
4 Total_Bathroom 6188.3413
5 Garage_Area 6199.9327
6 Deck_Porch_Area 6257.5170
7 Lot_Area 6301.8947
8 Bedroom_AbvGr 6313.3634
 Y = 6120.1  Effect = Bedroom_AbvGr 
 BIC = 6313.4  Effect = Lot_Area 
 BIC = 6301.9  Effect = Deck_Porch_Area 
 BIC = 6257.5  Effect = Garage_Area 
 BIC = 6199.9  Effect = Total_Bathroom 
 BIC = 6188.3  Effect = Age_Sold 
 BIC = 6179.7  Effect = Gr_Liv_Area 
 BIC = 6157.7  Effect = Basement_Area 
 BIC = 6129.3


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 2

Effect Entered: Gr_Liv_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 2 2.64483E11 1.322415E11 247.42
Error 297 1.587405E11 534479711  
Corrected Total 299 4.232235E11    
Root MSE 23119
Dependent Mean 137525
R-Square 0.6249
Adj R-Sq 0.6224
AIC 6334.02620
AICC 6334.16179
BIC 6030.68657
C(p) 282.75938
SBC 6043.13755
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 12664 6650.339855 1.90
Gr_Liv_Area 1 69.606974 6.399091 10.88
Basement_Area 1 52.309702 4.137885 12.64
Entry Candidates
Rank Effect BIC
1 Gr_Liv_Area 6030.6866
2 Age_Sold 6038.5613
3 Garage_Area 6047.7342
4 Total_Bathroom 6072.5166
5 Deck_Porch_Area 6101.2106
6 Lot_Area 6127.4086
7 Bedroom_AbvGr 6129.5416
 Y = 6025.7  Effect = Bedroom_AbvGr 
 BIC = 6129.5  Effect = Lot_Area 
 BIC = 6127.4  Effect = Deck_Porch_Area 
 BIC = 6101.2  Effect = Total_Bathroom 
 BIC = 6072.5  Effect = Garage_Area 
 BIC = 6047.7  Effect = Age_Sold 
 BIC = 6038.6  Effect = Gr_Liv_Area 
 BIC = 6030.7


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 3

Effect Entered: Age_Sold

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 3 3.207148E11 1.069049E11 308.69
Error 296 1.025087E11 346313132  
Corrected Total 299 4.232235E11    
Root MSE 18609
Dependent Mean 137525
R-Square 0.7578
Adj R-Sq 0.7553
AIC 6204.82927
AICC 6205.03335
BIC 5903.19742
C(p) 80.44973
SBC 5917.64440
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 53400 6235.076995 8.56
Gr_Liv_Area 1 68.106646 5.152294 13.22
Basement_Area 1 36.329120 3.559067 10.21
Age_Sold 1 -543.493346 42.651840 -12.74
Entry Candidates
Rank Effect BIC
1 Age_Sold 5903.1974
2 Garage_Area 5961.7128
3 Total_Bathroom 5992.7636
4 Deck_Porch_Area 6010.3666
5 Bedroom_AbvGr 6010.4910
6 Lot_Area 6031.5035
 Y = 5896.8  Effect = Lot_Area 
 BIC = 6031.5  Effect = Bedroom_AbvGr 
 BIC = 6010.5  Effect = Deck_Porch_Area 
 BIC = 6010.4  Effect = Total_Bathroom 
 BIC = 5992.8  Effect = Garage_Area 
 BIC = 5961.7  Effect = Age_Sold 
 BIC = 5903.2


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 4

Effect Entered: Garage_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 4 3.33571E11 83392754480 274.40
Error 295 89652501590 303906785  
Corrected Total 299 4.232235E11    
Root MSE 17433
Dependent Mean 137525
R-Square 0.7882
Adj R-Sq 0.7853
AIC 6166.62734
AICC 6166.91403
BIC 5865.82469
C(p) 35.73873
SBC 5883.14625
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 43815 6023.907004 7.27
Gr_Liv_Area 1 61.238136 4.940722 12.39
Basement_Area 1 33.430181 3.363709 9.94
Garage_Area 1 42.984492 6.608851 6.50
Age_Sold 1 -455.704354 42.173481 -10.81
Entry Candidates
Rank Effect BIC
1 Garage_Area 5865.8247
2 Deck_Porch_Area 5882.8416
3 Bedroom_AbvGr 5892.4510
4 Total_Bathroom 5899.5016
5 Lot_Area 5899.8240
 Y = 5864.1  Effect = Lot_Area 
 BIC = 5899.8  Effect = Total_Bathroom 
 BIC = 5899.5  Effect = Bedroom_AbvGr 
 BIC = 5892.5  Effect = Deck_Porch_Area 
 BIC = 5882.8  Effect = Garage_Area 
 BIC = 5865.8


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 5

Effect Entered: Deck_Porch_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 5 3.392788E11 67855752389 237.65
Error 294 83944757568 285526386  
Corrected Total 299 4.232235E11    
Root MSE 16898
Dependent Mean 137525
R-Square 0.8017
Adj R-Sq 0.7983
AIC 6148.89269
AICC 6149.27625
BIC 5848.69541
C(p) 17.00051
SBC 5869.11538
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 46009 5859.485517 7.85
Gr_Liv_Area 1 58.386514 4.831268 12.09
Basement_Area 1 30.554240 3.323249 9.19
Garage_Area 1 40.158112 6.436997 6.24
Deck_Porch_Area 1 35.720258 7.989240 4.47
Age_Sold 1 -447.254040 40.921927 -10.93
Entry Candidates
Rank Effect BIC
1 Deck_Porch_Area 5848.6954
2 Bedroom_AbvGr 5858.1723
3 Total_Bathroom 5863.7094
4 Lot_Area 5865.5528
 Y = 5847.9  Effect = Lot_Area 
 BIC = 5865.6  Effect = Total_Bathroom 
 BIC = 5863.7  Effect = Bedroom_AbvGr 
 BIC = 5858.2  Effect = Deck_Porch_Area 
 BIC = 5848.7


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 6

Effect Entered: Bedroom_AbvGr

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 6 3.410749E11 56845818595 202.75
Error 293 82148607939 280370676  
Corrected Total 299 4.232235E11    
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
BIC 5844.47548
C(p) 12.47448
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 48620 5897.324643 8.24
Gr_Liv_Area 1 65.097413 5.472624 11.90
Basement_Area 1 31.279351 3.305546 9.46
Garage_Area 1 38.728785 6.403565 6.05
Deck_Porch_Area 1 32.487956 8.019119 4.05
Age_Sold 1 -434.199118 40.877494 -10.62
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53
Entry Candidates
Rank Effect BIC
1 Bedroom_AbvGr 5844.4755
2 Total_Bathroom 5847.5999
3 Lot_Area 5848.2561
 Y = 5844.3  Effect = Lot_Area 
 BIC = 5848.3  Effect = Total_Bathroom 
 BIC = 5847.6  Effect = Bedroom_AbvGr 
 BIC = 5844.5


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 7

Effect Entered: Lot_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 7 3.424508E11 48921543221 176.86
Error 292 80772716963 276618894  
Corrected Total 299 4.232235E11    
Root MSE 16632
Dependent Mean 137525
R-Square 0.8091
Adj R-Sq 0.8046
AIC 6141.33678
AICC 6141.95747
BIC 5841.69151
C(p) 9.47539
SBC 5868.96704
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 47463 5880.674041 8.07
Gr_Liv_Area 1 65.303724 5.436672 12.01
Basement_Area 1 29.849078 3.345400 8.92
Garage_Area 1 36.309606 6.452405 5.63
Deck_Porch_Area 1 32.052554 7.967677 4.02
Lot_Area 1 0.708127 0.317512 2.23
Age_Sold 1 -447.198682 41.019314 -10.90
Bedroom_AbvGr 1 -5042.766498 1687.928168 -2.99
Entry Candidates
Rank Effect BIC
1 Lot_Area 5841.6915
2 Total_Bathroom 5844.0039
 Y = 5841.6  Effect = Total_Bathroom 
 BIC = 5844  Effect = Lot_Area 
 BIC = 5841.7


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection: Step 8

Effect Entered: Total_Bathroom

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
BIC 5841.35042
C(p) 9.00000
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57
Entry Candidates
Rank Effect BIC
1 Total_Bathroom 5841.3504
 Y = 5841.4  Effect = Total_Bathroom 
 BIC = 5841.4


Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Stepwise Selection Summary
Step Effect
Entered
Effect
Removed
Number
Effects In
BIC
* Optimal Value of Criterion
0 Intercept   1 6321.3096
1 Basement_Area   2 6129.3224
2 Gr_Liv_Area   3 6030.6866
3 Age_Sold   4 5903.1974
4 Garage_Area   5 5865.8247
5 Deck_Porch_Area   6 5848.6954
6 Bedroom_AbvGr   7 5844.4755
7 Lot_Area   8 5841.6915
8 Total_Bathroom   9 5841.3504*
Selection stopped because all effects are in the final model.
 Step = 8 
 Parameter = Total_Bathroom 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0528  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Total_Bathroom 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.089  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Age_Sold 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.307  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Age_Sold 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Lot_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0618  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Lot_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1106  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Deck_Porch_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Garage_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1675  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Garage_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Basement_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.2744  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 0 
 Parameter = Basement_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.3908  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Gr_Liv_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Y = 0  X = 8+Total_Bathroom  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 BIC = 5841.4  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.7  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.5  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.7  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.2  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.7  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3  Step = 0 
 Effect Sequence = Intercept 
 BIC = 6321.3  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 BIC = 5841.4  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.7  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.7  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.5  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.5  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.7  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.7  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.2  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.2  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.7  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.7  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3  Step = 0 
 Effect Sequence = Intercept 
 BIC = 6321.3  X = 8+Total_Bathroom
 Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6140.8  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6141.6  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  X = 8+Total_Bathroom  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 5868.3  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 0.8056  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 5841.4  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 BIC = 5841.3504  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.6915  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.4755  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.6954  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8247  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.1974  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.6866  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3224  Step = 0 
 Effect Sequence = Intercept 
 BIC = 6321.3096  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 BIC = 5841.3504  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.6915  Step = 7 
 Effect Sequence = 7+Lot_Area 
 BIC = 5841.6915  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.4755  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 BIC = 5844.4755  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.6954  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 BIC = 5848.6954  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8247  Step = 4 
 Effect Sequence = 4+Garage_Area 
 BIC = 5865.8247  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.1974  Step = 3 
 Effect Sequence = 3+Age_Sold 
 BIC = 5903.1974  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.6866  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 BIC = 6030.6866  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 BIC = 6129.3224  Step = 0 
 Effect Sequence = Intercept 
 BIC = 6321.3096  X = 8+Total_Bathroom
 Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  X = 8+Total_Bathroom

Stepwise Model Selection for SalePrice - BIC

The GLMSELECT Procedure

Selected Model

The selected model is the model at the last step (Step 8).

Effects: Intercept Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
BIC 5841.35042
C(p) 9.00000
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57

Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Data Set STATDATA.AMESHOUSING3
Dependent Variable SalePrice
Selection Method Stepwise
Select Criterion AICC
Stop Criterion AICC
Effect Hierarchy Enforced None
Number of Observations Read 300
Number of Observations Used 300
Dimensions
Number of Effects 9
Number of Parameters 9

Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 0

Effect Entered: Intercept

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 0 0 . .
Error 299 4.232235E11 1415463276  
Corrected Total 299 4.232235E11    
Root MSE 37623
Dependent Mean 137525
R-Square 0.0000
Adj R-Sq 0.0000
AIC 6624.21515
AICC 6624.25555
SBC 6325.91893
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 137525 2172.144314 63.31


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 1

Effect Entered: Basement_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 1 2.012418E11 2.012418E11 270.16
Error 298 2.219817E11 744904950  
Corrected Total 299 4.232235E11    
Root MSE 27293
Dependent Mean 137525
R-Square 0.4755
Adj R-Sq 0.4737
AIC 6432.62346
AICC 6432.70454
SBC 6138.03102
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 73904 4179.193780 17.68
Basement_Area 1 72.107717 4.387055 16.44
Entry Candidates
Rank Effect AICC
1 Basement_Area 6432.7045
2 Gr_Liv_Area 6461.2688
3 Age_Sold 6483.4907
4 Total_Bathroom 6492.1679
5 Garage_Area 6503.8385
6 Deck_Porch_Area 6561.7799
7 Lot_Area 6606.3949
8 Bedroom_AbvGr 6617.9200
 Y = 6423.4  Effect = Bedroom_AbvGr 
 AICC = 6617.9  Effect = Lot_Area 
 AICC = 6606.4  Effect = Deck_Porch_Area 
 AICC = 6561.8  Effect = Garage_Area 
 AICC = 6503.8  Effect = Total_Bathroom 
 AICC = 6492.2  Effect = Age_Sold 
 AICC = 6483.5  Effect = Gr_Liv_Area 
 AICC = 6461.3  Effect = Basement_Area 
 AICC = 6432.7


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 2

Effect Entered: Gr_Liv_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 2 2.64483E11 1.322415E11 247.42
Error 297 1.587405E11 534479711  
Corrected Total 299 4.232235E11    
Root MSE 23119
Dependent Mean 137525
R-Square 0.6249
Adj R-Sq 0.6224
AIC 6334.02620
AICC 6334.16179
SBC 6043.13755
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 12664 6650.339855 1.90
Gr_Liv_Area 1 69.606974 6.399091 10.88
Basement_Area 1 52.309702 4.137885 12.64
Entry Candidates
Rank Effect AICC
1 Gr_Liv_Area 6334.1618
2 Age_Sold 6342.1451
3 Garage_Area 6351.4417
4 Total_Bathroom 6376.5440
5 Deck_Porch_Area 6405.5828
6 Lot_Area 6432.0728
7 Bedroom_AbvGr 6434.2287
 Y = 6329.2  Effect = Bedroom_AbvGr 
 AICC = 6434.2  Effect = Lot_Area 
 AICC = 6432.1  Effect = Deck_Porch_Area 
 AICC = 6405.6  Effect = Total_Bathroom 
 AICC = 6376.5  Effect = Garage_Area 
 AICC = 6351.4  Effect = Age_Sold 
 AICC = 6342.1  Effect = Gr_Liv_Area 
 AICC = 6334.2


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 3

Effect Entered: Age_Sold

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 3 3.207148E11 1.069049E11 308.69
Error 296 1.025087E11 346313132  
Corrected Total 299 4.232235E11    
Root MSE 18609
Dependent Mean 137525
R-Square 0.7578
Adj R-Sq 0.7553
AIC 6204.82927
AICC 6205.03335
SBC 5917.64440
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 53400 6235.076995 8.56
Gr_Liv_Area 1 68.106646 5.152294 13.22
Basement_Area 1 36.329120 3.559067 10.21
Age_Sold 1 -543.493346 42.651840 -12.74
Entry Candidates
Rank Effect AICC
1 Age_Sold 6205.0334
2 Garage_Area 6264.8697
3 Total_Bathroom 6296.5482
4 Deck_Porch_Area 6314.4852
5 Bedroom_AbvGr 6314.6119
6 Lot_Area 6336.0030
 Y = 6198.5  Effect = Lot_Area 
 AICC = 6336  Effect = Bedroom_AbvGr 
 AICC = 6314.6  Effect = Deck_Porch_Area 
 AICC = 6314.5  Effect = Total_Bathroom 
 AICC = 6296.5  Effect = Garage_Area 
 AICC = 6264.9  Effect = Age_Sold 
 AICC = 6205


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 4

Effect Entered: Garage_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 4 3.33571E11 83392754480 274.40
Error 295 89652501590 303906785  
Corrected Total 299 4.232235E11    
Root MSE 17433
Dependent Mean 137525
R-Square 0.7882
Adj R-Sq 0.7853
AIC 6166.62734
AICC 6166.91403
SBC 5883.14625
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 43815 6023.907004 7.27
Gr_Liv_Area 1 61.238136 4.940722 12.39
Basement_Area 1 33.430181 3.363709 9.94
Garage_Area 1 42.984492 6.608851 6.50
Age_Sold 1 -455.704354 42.173481 -10.81
Entry Candidates
Rank Effect AICC
1 Garage_Area 6166.9140
2 Deck_Porch_Area 6184.4767
3 Bedroom_AbvGr 6194.3847
4 Total_Bathroom 6201.6500
5 Lot_Area 6201.9821
 Y = 6165.2  Effect = Lot_Area 
 AICC = 6202  Effect = Total_Bathroom 
 AICC = 6201.6  Effect = Bedroom_AbvGr 
 AICC = 6194.4  Effect = Deck_Porch_Area 
 AICC = 6184.5  Effect = Garage_Area 
 AICC = 6166.9


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 5

Effect Entered: Deck_Porch_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 5 3.392788E11 67855752389 237.65
Error 294 83944757568 285526386  
Corrected Total 299 4.232235E11    
Root MSE 16898
Dependent Mean 137525
R-Square 0.8017
Adj R-Sq 0.7983
AIC 6148.89269
AICC 6149.27625
SBC 5869.11538
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 46009 5859.485517 7.85
Gr_Liv_Area 1 58.386514 4.831268 12.09
Basement_Area 1 30.554240 3.323249 9.19
Garage_Area 1 40.158112 6.436997 6.24
Deck_Porch_Area 1 35.720258 7.989240 4.47
Age_Sold 1 -447.254040 40.921927 -10.93
Entry Candidates
Rank Effect AICC
1 Deck_Porch_Area 6149.2763
2 Bedroom_AbvGr 6159.1390
3 Total_Bathroom 6164.8974
4 Lot_Area 6166.8138
 Y = 6148.4  Effect = Lot_Area 
 AICC = 6166.8  Effect = Total_Bathroom 
 AICC = 6164.9  Effect = Bedroom_AbvGr 
 AICC = 6159.1  Effect = Deck_Porch_Area 
 AICC = 6149.3


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 6

Effect Entered: Bedroom_AbvGr

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 6 3.410749E11 56845818595 202.75
Error 293 82148607939 280370676  
Corrected Total 299 4.232235E11    
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 48620 5897.324643 8.24
Gr_Liv_Area 1 65.097413 5.472624 11.90
Basement_Area 1 31.279351 3.305546 9.46
Garage_Area 1 38.728785 6.403565 6.05
Deck_Porch_Area 1 32.487956 8.019119 4.05
Age_Sold 1 -434.199118 40.877494 -10.62
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53
Entry Candidates
Rank Effect AICC
1 Bedroom_AbvGr 6144.8988
2 Total_Bathroom 6148.1761
3 Lot_Area 6148.8642
 Y = 6144.7  Effect = Lot_Area 
 AICC = 6148.9  Effect = Total_Bathroom 
 AICC = 6148.2  Effect = Bedroom_AbvGr 
 AICC = 6144.9


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 7

Effect Entered: Lot_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 7 3.424508E11 48921543221 176.86
Error 292 80772716963 276618894  
Corrected Total 299 4.232235E11    
Root MSE 16632
Dependent Mean 137525
R-Square 0.8091
Adj R-Sq 0.8046
AIC 6141.33678
AICC 6141.95747
SBC 5868.96704
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 47463 5880.674041 8.07
Gr_Liv_Area 1 65.303724 5.436672 12.01
Basement_Area 1 29.849078 3.345400 8.92
Garage_Area 1 36.309606 6.452405 5.63
Deck_Porch_Area 1 32.052554 7.967677 4.02
Lot_Area 1 0.708127 0.317512 2.23
Age_Sold 1 -447.198682 41.019314 -10.90
Bedroom_AbvGr 1 -5042.766498 1687.928168 -2.99
Entry Candidates
Rank Effect AICC
1 Lot_Area 6141.9575
2 Total_Bathroom 6144.4020
 Y = 6141.8  Effect = Total_Bathroom 
 AICC = 6144.4  Effect = Lot_Area 
 AICC = 6142


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection: Step 8

Effect Entered: Total_Bathroom

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57
Entry Candidates
Rank Effect AICC
1 Total_Bathroom 6141.5569
 Y = 6141.6  Effect = Total_Bathroom 
 AICC = 6141.6


Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Stepwise Selection Summary
Step Effect
Entered
Effect
Removed
Number
Effects In
AICC
* Optimal Value of Criterion
0 Intercept   1 6624.2555
1 Basement_Area   2 6432.7045
2 Gr_Liv_Area   3 6334.1618
3 Age_Sold   4 6205.0334
4 Garage_Area   5 6166.9140
5 Deck_Porch_Area   6 6149.2763
6 Bedroom_AbvGr   7 6144.8988
7 Lot_Area   8 6141.9575
8 Total_Bathroom   9 6141.5569*
Selection stopped because all effects are in the final model.
 Step = 8 
 Parameter = Total_Bathroom 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0528  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 7 
 Parameter = Total_Bathroom 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Total_Bathroom 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Total_Bathroom 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Total_Bathroom 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Total_Bathroom 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Total_Bathroom 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Total_Bathroom 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Total_Bathroom 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.089  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 7 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.093  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Age_Sold 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = -0.307  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 7 
 Parameter = Age_Sold 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = -0.327  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Age_Sold 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Lot_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.0618  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 7 
 Parameter = Lot_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.0626  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Lot_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Lot_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Lot_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Lot_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Lot_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Lot_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Lot_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1106  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 7 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.113  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Deck_Porch_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Garage_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.1675  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 7 
 Parameter = Garage_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.1701  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Garage_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Basement_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.2744  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 7 
 Parameter = Basement_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.2854  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 0 
 Parameter = Basement_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 8 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 8+Total_Bathroom 
 Standardized Coefficient = 0.3908  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 7 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 7+Lot_Area 
 Standardized Coefficient = 0.4038  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Gr_Liv_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Y = 0  X = 8+Total_Bathroom  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.6  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6142  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.9  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.3  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.2  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.3  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.6  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6142  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6142  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.9  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.9  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.3  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.3  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.2  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.2  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.3  X = 8+Total_Bathroom
 Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6140.8  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AIC = 6140.7956  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AIC = 6141.3368  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 6141.6  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 AICC = 6141.5569  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 7 
 Effect Sequence = 7+Lot_Area 
 AICC = 6141.9575  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  X = 8+Total_Bathroom  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 5868.3  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 SBC = 5872.1297  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 7 
 Effect Sequence = 7+Lot_Area 
 SBC = 5868.9670  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  X = 8+Total_Bathroom  Optimal Step = 8+Total_Bathroom 
 Optimal Value = 0.8056  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Adj R-Sq = 0.8056  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Adj R-Sq = 0.8046  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  X = 8+Total_Bathroom
 Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  Step = 8 
 Effect Sequence = 8+Total_Bathroom 
 Training ASE = 266971403  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 7 
 Effect Sequence = 7+Lot_Area 
 Training ASE = 269242390  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  X = 8+Total_Bathroom

Stepwise Model Selection for SalePrice - AICC

The GLMSELECT Procedure

Selected Model

The selected model is the model at the last step (Step 8).

Effects: Intercept Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 8 3.431321E11 42891512314 155.84
Error 291 80091420996 275228251  
Corrected Total 299 4.232235E11    
Root MSE 16590
Dependent Mean 137525
R-Square 0.8108
Adj R-Sq 0.8056
AIC 6140.79563
AICC 6141.55688
SBC 5872.12967
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 44347 6191.271944 7.16
Gr_Liv_Area 1 63.197764 5.585739 11.31
Basement_Area 1 28.692184 3.417034 8.40
Garage_Area 1 35.754191 6.445840 5.55
Deck_Porch_Area 1 31.370539 7.959436 3.94
Lot_Area 1 0.699495 0.316761 2.21
Age_Sold 1 -420.815037 44.219144 -9.52
Bedroom_AbvGr 1 -4834.848748 1688.858227 -2.86
Total_Bathroom 1 3022.124723 1920.839066 1.57

Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Data Set STATDATA.AMESHOUSING3
Dependent Variable SalePrice
Selection Method Stepwise
Select Criterion SBC
Stop Criterion SBC
Effect Hierarchy Enforced None
Number of Observations Read 300
Number of Observations Used 300
Dimensions
Number of Effects 9
Number of Parameters 9

Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 0

Effect Entered: Intercept

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 0 0 . .
Error 299 4.232235E11 1415463276  
Corrected Total 299 4.232235E11    
Root MSE 37623
Dependent Mean 137525
R-Square 0.0000
Adj R-Sq 0.0000
AIC 6624.21515
AICC 6624.25555
SBC 6325.91893
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 137525 2172.144314 63.31


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 1

Effect Entered: Basement_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 1 2.012418E11 2.012418E11 270.16
Error 298 2.219817E11 744904950  
Corrected Total 299 4.232235E11    
Root MSE 27293
Dependent Mean 137525
R-Square 0.4755
Adj R-Sq 0.4737
AIC 6432.62346
AICC 6432.70454
SBC 6138.03102
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 73904 4179.193780 17.68
Basement_Area 1 72.107717 4.387055 16.44
Entry Candidates
Rank Effect SBC
1 Basement_Area 6138.0310
2 Gr_Liv_Area 6166.5953
3 Age_Sold 6188.8172
4 Total_Bathroom 6197.4944
5 Garage_Area 6209.1649
6 Deck_Porch_Area 6267.1064
7 Lot_Area 6311.7214
8 Bedroom_AbvGr 6323.2465
 Y = 6128.8  Effect = Bedroom_AbvGr 
 SBC = 6323.2  Effect = Lot_Area 
 SBC = 6311.7  Effect = Deck_Porch_Area 
 SBC = 6267.1  Effect = Garage_Area 
 SBC = 6209.2  Effect = Total_Bathroom 
 SBC = 6197.5  Effect = Age_Sold 
 SBC = 6188.8  Effect = Gr_Liv_Area 
 SBC = 6166.6  Effect = Basement_Area 
 SBC = 6138


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 2

Effect Entered: Gr_Liv_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 2 2.64483E11 1.322415E11 247.42
Error 297 1.587405E11 534479711  
Corrected Total 299 4.232235E11    
Root MSE 23119
Dependent Mean 137525
R-Square 0.6249
Adj R-Sq 0.6224
AIC 6334.02620
AICC 6334.16179
SBC 6043.13755
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 12664 6650.339855 1.90
Gr_Liv_Area 1 69.606974 6.399091 10.88
Basement_Area 1 52.309702 4.137885 12.64
Entry Candidates
Rank Effect SBC
1 Gr_Liv_Area 6043.1375
2 Age_Sold 6051.1208
3 Garage_Area 6060.4174
4 Total_Bathroom 6085.5197
5 Deck_Porch_Area 6114.5586
6 Lot_Area 6141.0486
7 Bedroom_AbvGr 6143.2044
 Y = 6038.1  Effect = Bedroom_AbvGr 
 SBC = 6143.2  Effect = Lot_Area 
 SBC = 6141  Effect = Deck_Porch_Area 
 SBC = 6114.6  Effect = Total_Bathroom 
 SBC = 6085.5  Effect = Garage_Area 
 SBC = 6060.4  Effect = Age_Sold 
 SBC = 6051.1  Effect = Gr_Liv_Area 
 SBC = 6043.1


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 3

Effect Entered: Age_Sold

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 3 3.207148E11 1.069049E11 308.69
Error 296 1.025087E11 346313132  
Corrected Total 299 4.232235E11    
Root MSE 18609
Dependent Mean 137525
R-Square 0.7578
Adj R-Sq 0.7553
AIC 6204.82927
AICC 6205.03335
SBC 5917.64440
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 53400 6235.076995 8.56
Gr_Liv_Area 1 68.106646 5.152294 13.22
Basement_Area 1 36.329120 3.559067 10.21
Age_Sold 1 -543.493346 42.651840 -12.74
Entry Candidates
Rank Effect SBC
1 Age_Sold 5917.6444
2 Garage_Area 5977.4808
3 Total_Bathroom 6009.1592
4 Deck_Porch_Area 6027.0962
5 Bedroom_AbvGr 6027.2230
6 Lot_Area 6048.6141
 Y = 5911.1  Effect = Lot_Area 
 SBC = 6048.6  Effect = Bedroom_AbvGr 
 SBC = 6027.2  Effect = Deck_Porch_Area 
 SBC = 6027.1  Effect = Total_Bathroom 
 SBC = 6009.2  Effect = Garage_Area 
 SBC = 5977.5  Effect = Age_Sold 
 SBC = 5917.6


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 4

Effect Entered: Garage_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 4 3.33571E11 83392754480 274.40
Error 295 89652501590 303906785  
Corrected Total 299 4.232235E11    
Root MSE 17433
Dependent Mean 137525
R-Square 0.7882
Adj R-Sq 0.7853
AIC 6166.62734
AICC 6166.91403
SBC 5883.14625
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 43815 6023.907004 7.27
Gr_Liv_Area 1 61.238136 4.940722 12.39
Basement_Area 1 33.430181 3.363709 9.94
Garage_Area 1 42.984492 6.608851 6.50
Age_Sold 1 -455.704354 42.173481 -10.81
Entry Candidates
Rank Effect SBC
1 Garage_Area 5883.1463
2 Deck_Porch_Area 5900.7089
3 Bedroom_AbvGr 5910.6169
4 Total_Bathroom 5917.8822
5 Lot_Area 5918.2143
 Y = 5881.4  Effect = Lot_Area 
 SBC = 5918.2  Effect = Total_Bathroom 
 SBC = 5917.9  Effect = Bedroom_AbvGr 
 SBC = 5910.6  Effect = Deck_Porch_Area 
 SBC = 5900.7  Effect = Garage_Area 
 SBC = 5883.1


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 5

Effect Entered: Deck_Porch_Area

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 5 3.392788E11 67855752389 237.65
Error 294 83944757568 285526386  
Corrected Total 299 4.232235E11    
Root MSE 16898
Dependent Mean 137525
R-Square 0.8017
Adj R-Sq 0.7983
AIC 6148.89269
AICC 6149.27625
SBC 5869.11538
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 46009 5859.485517 7.85
Gr_Liv_Area 1 58.386514 4.831268 12.09
Basement_Area 1 30.554240 3.323249 9.19
Garage_Area 1 40.158112 6.436997 6.24
Deck_Porch_Area 1 35.720258 7.989240 4.47
Age_Sold 1 -447.254040 40.921927 -10.93
Entry Candidates
Rank Effect SBC
1 Deck_Porch_Area 5869.1154
2 Bedroom_AbvGr 5878.9781
3 Total_Bathroom 5884.7365
4 Lot_Area 5886.6529
 Y = 5868.2  Effect = Lot_Area 
 SBC = 5886.7  Effect = Total_Bathroom 
 SBC = 5884.7  Effect = Bedroom_AbvGr 
 SBC = 5879  Effect = Deck_Porch_Area 
 SBC = 5869.1


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection: Step 6

Effect Entered: Bedroom_AbvGr

Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 6 3.410749E11 56845818595 202.75
Error 293 82148607939 280370676  
Corrected Total 299 4.232235E11    
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 48620 5897.324643 8.24
Gr_Liv_Area 1 65.097413 5.472624 11.90
Basement_Area 1 31.279351 3.305546 9.46
Garage_Area 1 38.728785 6.403565 6.05
Deck_Porch_Area 1 32.487956 8.019119 4.05
Age_Sold 1 -434.199118 40.877494 -10.62
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53
Entry Candidates
Rank Effect SBC
1 Bedroom_AbvGr 5868.3305
2 Total_Bathroom 5871.6077
3 Lot_Area 5872.2959
 Y = 5868.1  Effect = Lot_Area 
 SBC = 5872.3  Effect = Total_Bathroom 
 SBC = 5871.6  Effect = Bedroom_AbvGr 
 SBC = 5868.3


Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Stepwise Selection Summary
Step Effect
Entered
Effect
Removed
Number
Effects In
SBC
* Optimal Value of Criterion
0 Intercept   1 6325.9189
1 Basement_Area   2 6138.0310
2 Gr_Liv_Area   3 6043.1375
3 Age_Sold   4 5917.6444
4 Garage_Area   5 5883.1463
5 Deck_Porch_Area   6 5869.1154
6 Bedroom_AbvGr   7 5868.3305*
Selection stopped at a local minimum of the SBC criterion.
Stop Details
Candidate
For
Effect Candidate
SBC
  Compare
SBC
Entry Lot_Area 5868.9670 > 5868.3305
Removal Bedroom_AbvGr 5869.1154 > 5868.3305
 Step = 6 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.077  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 5 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Bedroom_AbvGr 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Age_Sold 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = -0.317  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 5 
 Parameter = Age_Sold 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = -0.327  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 4 
 Parameter = Age_Sold 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = -0.333  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 3 
 Parameter = Age_Sold 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = -0.397  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Age_Sold 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Age_Sold 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Age_Sold 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1145  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 5 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1259  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 4 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Deck_Porch_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Deck_Porch_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Garage_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.1814  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 5 
 Parameter = Garage_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.1881  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 4 
 Parameter = Garage_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.2014  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 3 
 Parameter = Garage_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 2 
 Parameter = Garage_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Garage_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Garage_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Basement_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.2991  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 5 
 Parameter = Basement_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.2922  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 4 
 Parameter = Basement_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3197  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 3 
 Parameter = Basement_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.3474  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 2 
 Parameter = Basement_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.5002  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 1 
 Parameter = Basement_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0.6896  Step = 0 
 Parameter = Basement_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Step = 6 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 6+Bedroom_AbvGr 
 Standardized Coefficient = 0.4025  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 5 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 5+Deck_Porch_Area 
 Standardized Coefficient = 0.361  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 4 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 4+Garage_Area 
 Standardized Coefficient = 0.3787  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 3 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 3+Age_Sold 
 Standardized Coefficient = 0.4212  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 2 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 2+Gr_Liv_Area 
 Standardized Coefficient = 0.4304  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 1 
 Parameter = Gr_Liv_Area 
 Effect Sequence = 1+Basement_Area 
 Standardized Coefficient = 0  Step = 0 
 Parameter = Gr_Liv_Area 
 Effect Sequence = Intercept 
 Standardized Coefficient = 0  Y = 0  X = 6+Bedroom_AbvGr  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9  X = 6+Bedroom_AbvGr
 Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 6144.4  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AIC = 6144.4040  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AIC = 6148.8927  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AIC = 6166.6273  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AIC = 6204.8293  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AIC = 6334.0262  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AIC = 6432.6235  Step = 0 
 Effect Sequence = Intercept 
 AIC = 6624.2151  X = 6+Bedroom_AbvGr  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 6144.9  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 AICC = 6144.8988  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 AICC = 6149.2763  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 4 
 Effect Sequence = 4+Garage_Area 
 AICC = 6166.9140  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 3 
 Effect Sequence = 3+Age_Sold 
 AICC = 6205.0334  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 AICC = 6334.1618  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 1 
 Effect Sequence = 1+Basement_Area 
 AICC = 6432.7045  Step = 0 
 Effect Sequence = Intercept 
 AICC = 6624.2555  X = 6+Bedroom_AbvGr  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 5868.3  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 SBC = 5868.3305  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 SBC = 5869.1154  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 4 
 Effect Sequence = 4+Garage_Area 
 SBC = 5883.1463  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 3 
 Effect Sequence = 3+Age_Sold 
 SBC = 5917.6444  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 SBC = 6043.1375  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 1 
 Effect Sequence = 1+Basement_Area 
 SBC = 6138.0310  Step = 0 
 Effect Sequence = Intercept 
 SBC = 6325.9189  X = 6+Bedroom_AbvGr  Optimal Step = 6+Bedroom_AbvGr 
 Optimal Value = 0.8019  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Adj R-Sq = 0.8019  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Adj R-Sq = 0.7983  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Adj R-Sq = 0.7853  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Adj R-Sq = 0.7553  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Adj R-Sq = 0.6224  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Adj R-Sq = 0.4737  Step = 0 
 Effect Sequence = Intercept 
 Adj R-Sq = 0  X = 6+Bedroom_AbvGr
 Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  Step = 6 
 Effect Sequence = 6+Bedroom_AbvGr 
 Training ASE = 273828693  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 5 
 Effect Sequence = 5+Deck_Porch_Area 
 Training ASE = 279815859  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 4 
 Effect Sequence = 4+Garage_Area 
 Training ASE = 298841672  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 3 
 Effect Sequence = 3+Age_Sold 
 Training ASE = 341695623  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 2 
 Effect Sequence = 2+Gr_Liv_Area 
 Training ASE = 529134914  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 1 
 Effect Sequence = 1+Basement_Area 
 Training ASE = 739938917  Step = 0 
 Effect Sequence = Intercept 
 Training ASE = 1410745065  X = 6+Bedroom_AbvGr

Stepwise Model Selection for SalePrice - SBC

The GLMSELECT Procedure

Selected Model

The selected model is the model at the last step (Step 6).

Effects: Intercept Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area Age_Sold Bedroom_AbvGr
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value
Model 6 3.410749E11 56845818595 202.75
Error 293 82148607939 280370676  
Corrected Total 299 4.232235E11    
Root MSE 16744
Dependent Mean 137525
R-Square 0.8059
Adj R-Sq 0.8019
AIC 6144.40398
AICC 6144.89882
SBC 5868.33046
Parameter Estimates
Parameter DF Estimate Standard
Error
t Value
Intercept 1 48620 5897.324643 8.24
Gr_Liv_Area 1 65.097413 5.472624 11.90
Basement_Area 1 31.279351 3.305546 9.46
Garage_Area 1 38.728785 6.403565 6.05
Deck_Porch_Area 1 32.487956 8.019119 4.05
Age_Sold 1 -434.199118 40.877494 -10.62
Bedroom_AbvGr 1 -4189.095026 1655.065743 -2.53

Include= option


In [16]:
title "Forcing Variables into a Stepwise Model";
proc reg data=exercise;
model Pushups = Max_Pulse Age Rest_Pulse Run_Pulse /
selection = stepwise include=1;
run;
quit;


Out[16]:

298  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
299
300 title "Forcing Variables into a Stepwise Model";
301 proc reg data=exercise;
ERROR: File WORK.EXERCISE.DATA does not exist.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
302 model Pushups = Max_Pulse Age Rest_Pulse Run_Pulse /
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
303 selection = stepwise include=1;
304 run;
NOTE: PROCEDURE REG used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

305 quit;
306 ods html5 close;ods listing;

307

Influential Observations

The INFLUENCE option gives you statistics that show you how much each observation changes aspects of the regression depending on whether that observation is included. The R option gives you more details about the residuals, as well as the value of the Cook’s D statistic.

Plot Name Description
Cooksd Cook’s D statistic (the effect on the predicted value)
Rstudentbypredicted Externally Studentized residuals by predicted value
DFFITS The difference in the overall effect on the betas
DFBETAS The difference on each beta (one computed for each variable)

The Cook's D statistic measures the distance between the set of parameter estimates with that observation deleted from your regression analysis and the set of parameter estimates with all the observations in your regression analysis. If any observation has a Cook's D statistic greater than 4 divided by n, where n is the sample size, that observation is influential. The Cook's D statistic is most useful for identifying influential observations when the purpose of your model is parameter estimation.

STUDENT residuals are calculated by dividing the residuals by their standard errors, so you can think of each STUDENT residual as roughly equivalent to a z-score. Typically, people consider z-scores large if their absolute value is greater than 2. So, for a relatively small sample size, a cutoff value of plus or minus 2 is reasonable for STUDENT residuals. However, with a large sample, it's very likely that even more STUDENT residuals greater than plus or minus 2 will occur just by chance. So, for larger data sets, you should typically use a larger cutoff value, the absolute value of 3.

SAS computes the RStudent value by computing the residual between each data point and a regression line that was computed with that data point removed, and then dividing by the standard error. Why is this computation necessary? If you have a very influential data point, it will pull the line (or surface) closer to the point. Then, when you compute the residual, you get a smaller value than if you had computed the regression with the data point omitted. Various texts refer to the RStudent residuals as deleted residuals or externally standardized residuals.You can use two rules of thumb to evaluate RSTUDENT residuals. First, if the RSTUDENT residual is different from the STUDENT residual, the observation is probably influential. Second, if the absolute value of the RSTUDENT residuals is greater than 2 or 3, you've probably detected an influential observation.

DFFITS measures the impact that each observation has on its own predicted value. For each observation, DFFITS is calculated using two predicted values. The first predicted value is calculated from a model using the entire data set to estimate model parameters. The second predicted value is calculated from a model using the data set with that particular observation removed to estimate model parameters. The difference between the two predicted values is divided by the standard error of the predicted value, without the observation. If the standardized difference between these predicted values is large, that particular observation has a large effect on the model fit. The rule of thumb for DFFITS has two versions. The general cutoff value is 2. The more precise cutoff is 2 times the square root of p divided by n, where p is the number of terms in the model, including the intercept, and n is the sample size. If the absolute value of DFFITS for any observation is greater than this cutoff value, you've detected an influential observation. DFFITS is most useful for predictive models.

DFBETAS measure the change in each parameter estimate. One DFBETA is calculated per predictor variable per observation. Each DFBETA is calculated by taking the estimated coefficient for that particular predictor variable, using all the data, and subtracting the estimated coefficient for that particular predictor variable with the current observation removed. This difference in the betas is divided by its standard error. This calculation is repeated for all predictor variables and all observations. Large DFBETAS indicate observations that are influential in estimating a given parameter. For DFBETAS, you use the same two rules of thumb as for DFFITS. The general cutoff value is 2. The more precise cutoff is $2{\sqrt{1/n}}$, where n is the sample size.

The DFBETAS plot is a panel plot. It contains one plot for each parameter. In this case, because we have so many parameters, SAS created two panels.

You can use STUDENT residuals to detect outliers. To detect influential observations, you can use RSTUDENT residuals and the DFFITS and Cook's D statistics.

What to do with infuential observations?

First, recheck for data entry errors.

Second, if the data appears to be valid, consider whether you have an adequate model. A different model might fit the data better. Here's one rule of thumb: Divide the number of influential observations you detect by the number of observations in your data set. If the result is greater than 5%, you probably have the wrong model. You might need a model that uses higher order terms.

Third, determine whether the influential observation is valid but just unusual. If you had a larger sample size there might be more observations similar to the unusual one. You might have to collect more data to confirm the relationship suggested by the influential observation.


In [17]:
%let interval=Gr_Liv_Area Basement_Area Garage_Area Deck_Porch_Area 
              Lot_Area Age_Sold Bedroom_AbvGr Total_Bathroom ;

ods select none;
proc glmselect data=statdata.ameshousing3 plots=all;
   STEPWISE: model SalePrice = &interval / selection=stepwise
                   details=steps select=SL slentry=0.05 slstay=0.05;
   title "Stepwise Model Selection for SalePrice - SL 0.05";
run;
quit;
ods select all;

ods graphics on;
ods output RSTUDENTBYPREDICTED=Rstud 
           COOKSDPLOT=Cook
           DFFITSPLOT=Dffits 
           DFBETASPANEL=Dfbs;
proc reg data=statdata.ameshousing3 
         plots(unpack only label)=
              (RSTUDENTBYPREDICTED 
               COOKSD 
               DFFITS 
               DFBETAS);
   SigLimit: model SalePrice = &_GLSIND; /**/
   title 'SigLimit Model - Plots of Diagnostic Statistics';
run;
quit;


Out[17]:
SAS Output

SigLimit Model - Plots of Diagnostic Statistics

The REG Procedure

Model: SigLimit

Dependent Variable: SalePrice Sale price in dollars

Number of Observations Read 300
Number of Observations Used 300
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 7 3.424508E11 48921543221 176.86 <.0001
Error 292 80772716963 276618894    
Corrected Total 299 4.232235E11      
Root MSE 16632 R-Square 0.8091
Dependent Mean 137525 Adj R-Sq 0.8046
Coeff Var 12.09371    
Parameter Estimates
Variable Label DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept Intercept 1 47463 5880.67404 8.07 <.0001
Gr_Liv_Area Above grade (ground) living area square feet 1 65.30372 5.43667 12.01 <.0001
Basement_Area Basement area in square feet 1 29.84908 3.34540 8.92 <.0001
Garage_Area Size of garage in square feet 1 36.30961 6.45241 5.63 <.0001
Deck_Porch_Area Total area of decks and porches in square feet 1 32.05255 7.96768 4.02 <.0001
Lot_Area Lot size in square feet 1 0.70813 0.31751 2.23 0.0265
Age_Sold Age of house when sold, in years 1 -447.19868 41.01931 -10.90 <.0001
Bedroom_AbvGr Bedrooms above grade 1 -5042.76650 1687.92817 -2.99 0.0031

SigLimit Model - Plots of Diagnostic Statistics

The REG Procedure

Model: SigLimit

Dependent Variable: SalePrice Sale price in dollars

 RStudent = -0.599 
 Predicted Value = 140908 
 Observation Number = 300  RStudent = -1.757 
 Predicted Value = 182305 
 Observation Number = 299  RStudent = -1.354 
 Predicted Value = 130156 
 Observation Number = 298  RStudent = 0.4883 
 Predicted Value = 63977 
 Observation Number = 297  RStudent = 0.7779 
 Predicted Value = 132581 
 Observation Number = 296  RStudent = -0.213 
 Predicted Value = 160465 
 Observation Number = 295  RStudent = -1.897 
 Predicted Value = 65812 
 Observation Number = 294  RStudent = -0.74 
 Predicted Value = 129285 
 Observation Number = 293  RStudent = -2.493 
 Predicted Value = 190247 
 Observation Number = 292  RStudent = 0.2834 
 Predicted Value = 115225 
 Observation Number = 291  RStudent = 0.8048 
 Predicted Value = 203725 
 Observation Number = 290  RStudent = -0.189 
 Predicted Value = 196126 
 Observation Number = 289  RStudent = 0.6552 
 Predicted Value = 134455 
 Observation Number = 288  RStudent = 0.0173 
 Predicted Value = 157717 
 Observation Number = 287  RStudent = 1.1097 
 Predicted Value = 136158 
 Observation Number = 286  RStudent = 2.2548 
 Predicted Value = 88303 
 Observation Number = 285  RStudent = -1.33 
 Predicted Value = 112920 
 Observation Number = 284  RStudent = -0.742 
 Predicted Value = 137716 
 Observation Number = 283  RStudent = 0.4037 
 Predicted Value = 109870 
 Observation Number = 282  RStudent = -0.473 
 Predicted Value = 117798 
 Observation Number = 281  RStudent = -0.848 
 Predicted Value = 128471 
 Observation Number = 280  RStudent = -0.007 
 Predicted Value = 114612 
 Observation Number = 279  RStudent = -1.848 
 Predicted Value = 94330 
 Observation Number = 278  RStudent = -0.836 
 Predicted Value = 139963 
 Observation Number = 277  RStudent = 0.5766 
 Predicted Value = 126038 
 Observation Number = 276  RStudent = -0.539 
 Predicted Value = 113906 
 Observation Number = 275  RStudent = 0.7148 
 Predicted Value = 98200 
 Observation Number = 274  RStudent = 0.7186 
 Predicted Value = 128340 
 Observation Number = 273  RStudent = -0.426 
 Predicted Value = 112027 
 Observation Number = 272  RStudent = 0.0917 
 Predicted Value = 153487 
 Observation Number = 271  RStudent = 0.2267 
 Predicted Value = 142243 
 Observation Number = 270  RStudent = -0.447 
 Predicted Value = 100824 
 Observation Number = 269  RStudent = 0.5107 
 Predicted Value = 101528 
 Observation Number = 268  RStudent = 1.2459 
 Predicted Value = 109321 
 Observation Number = 267  RStudent = 1.029 
 Predicted Value = 142995 
 Observation Number = 266  RStudent = -1.084 
 Predicted Value = 144804 
 Observation Number = 265  RStudent = -0.094 
 Predicted Value = 136560 
 Observation Number = 264  RStudent = 0.5383 
 Predicted Value = 128113 
 Observation Number = 263  RStudent = -0.922 
 Predicted Value = 139603 
 Observation Number = 262  RStudent = -0.757 
 Predicted Value = 152516 
 Observation Number = 261  RStudent = -1.513 
 Predicted Value = 171362 
 Observation Number = 260  RStudent = -0.187 
 Predicted Value = 173061 
 Observation Number = 259  RStudent = -0.723 
 Predicted Value = 159257 
 Observation Number = 258  RStudent = -0.24 
 Predicted Value = 180327 
 Observation Number = 257  RStudent = 0.417 
 Predicted Value = 122300 
 Observation Number = 256  RStudent = -0.034 
 Predicted Value = 135558 
 Observation Number = 255  RStudent = 1.0983 
 Predicted Value = 106011 
 Observation Number = 254  RStudent = -0.317 
 Predicted Value = 138734 
 Observation Number = 253  RStudent = -1.233 
 Predicted Value = 109273 
 Observation Number = 252  RStudent = -0.633 
 Predicted Value = 128401 
 Observation Number = 251  RStudent = -1.035 
 Predicted Value = 122490 
 Observation Number = 250  RStudent = -1.036 
 Predicted Value = 207031 
 Observation Number = 249  RStudent = 0.3258 
 Predicted Value = 148103 
 Observation Number = 248  RStudent = 0.4869 
 Predicted Value = 160941 
 Observation Number = 247  RStudent = 1.0742 
 Predicted Value = 139775 
 Observation Number = 246  RStudent = -0.219 
 Predicted Value = 128106 
 Observation Number = 245  RStudent = 0.2688 
 Predicted Value = 125054 
 Observation Number = 244  RStudent = -0.521 
 Predicted Value = 162022 
 Observation Number = 243  RStudent = -2.469 
 Predicted Value = 115199 
 Observation Number = 242  RStudent = -0.773 
 Predicted Value = 106508 
 Observation Number = 241  RStudent = -2.228 
 Predicted Value = 169364 
 Observation Number = 240  RStudent = -0.859 
 Predicted Value = 153865 
 Observation Number = 239  RStudent = 1.6849 
 Predicted Value = 159821 
 Observation Number = 238  RStudent = -0.524 
 Predicted Value = 189154 
 Observation Number = 237  RStudent = -1.114 
 Predicted Value = 152412 
 Observation Number = 236  RStudent = 0.7137 
 Predicted Value = 113123 
 Observation Number = 235  RStudent = -0.664 
 Predicted Value = 110988 
 Observation Number = 234  RStudent = 1.488 
 Predicted Value = 129857 
 Observation Number = 233  RStudent = 0.6224 
 Predicted Value = 109461 
 Observation Number = 232  RStudent = 1.2683 
 Predicted Value = 69607 
 Observation Number = 231  RStudent = 1.0638 
 Predicted Value = 124048 
 Observation Number = 230  RStudent = 0.3721 
 Predicted Value = 90367 
 Observation Number = 229  RStudent = -0.773 
 Predicted Value = 146234 
 Observation Number = 228  RStudent = -2.894 
 Predicted Value = 156964 
 Observation Number = 227  RStudent = -0.774 
 Predicted Value = 144199 
 Observation Number = 226  RStudent = 1.075 
 Predicted Value = 142308 
 Observation Number = 225  RStudent = 0.8554 
 Predicted Value = 139342 
 Observation Number = 224  RStudent = -0.228 
 Predicted Value = 180197 
 Observation Number = 223  RStudent = 0.1336 
 Predicted Value = 210798 
 Observation Number = 222  RStudent = -0.451 
 Predicted Value = 187325 
 Observation Number = 221  RStudent = -0.711 
 Predicted Value = 148182 
 Observation Number = 220  RStudent = -0.696 
 Predicted Value = 91341 
 Observation Number = 219  RStudent = -2.337 
 Predicted Value = 148219 
 Observation Number = 218  RStudent = -0.745 
 Predicted Value = 132190 
 Observation Number = 217  RStudent = 1.6385 
 Predicted Value = 138158 
 Observation Number = 216  RStudent = -0.503 
 Predicted Value = 126829 
 Observation Number = 215  RStudent = 0.6754 
 Predicted Value = 75922 
 Observation Number = 214  RStudent = -1.935 
 Predicted Value = 159915 
 Observation Number = 213  RStudent = 0.2204 
 Predicted Value = 97357 
 Observation Number = 212  RStudent = 2.1097 
 Predicted Value = 104712 
 Observation Number = 211  RStudent = 0.8593 
 Predicted Value = 125874 
 Observation Number = 210  RStudent = -0.437 
 Predicted Value = 109214 
 Observation Number = 209  RStudent = 0.3918 
 Predicted Value = 124524 
 Observation Number = 208  RStudent = 0.9434 
 Predicted Value = 112417 
 Observation Number = 207  RStudent = -1.082 
 Predicted Value = 146101 
 Observation Number = 206  RStudent = -0.211 
 Predicted Value = 117438 
 Observation Number = 205  RStudent = -0.22 
 Predicted Value = 128621 
 Observation Number = 204  RStudent = -0.937 
 Predicted Value = 115383 
 Observation Number = 203  RStudent = 1.0871 
 Predicted Value = 92634 
 Observation Number = 202  RStudent = 0.1973 
 Predicted Value = 105250 
 Observation Number = 201  RStudent = 0.58 
 Predicted Value = 120399 
 Observation Number = 200  RStudent = 0.0395 
 Predicted Value = 99253 
 Observation Number = 199  RStudent = 0.5326 
 Predicted Value = 116673 
 Observation Number = 198  RStudent = 0.6713 
 Predicted Value = 88019 
 Observation Number = 197  RStudent = 0.2295 
 Predicted Value = 115197 
 Observation Number = 196  RStudent = 0.4043 
 Predicted Value = 121814 
 Observation Number = 195  RStudent = -0.359 
 Predicted Value = 121940 
 Observation Number = 194  RStudent = 0.1093 
 Predicted Value = 137606 
 Observation Number = 193  RStudent = -0.297 
 Predicted Value = 119417 
 Observation Number = 192  RStudent = -0.219 
 Predicted Value = 67601 
 Observation Number = 191  RStudent = -0.074 
 Predicted Value = 40493 
 Observation Number = 190  RStudent = 0.3898 
 Predicted Value = 117544 
 Observation Number = 189  RStudent = -0.455 
 Predicted Value = 165508 
 Observation Number = 188  RStudent = -0.567 
 Predicted Value = 152399 
 Observation Number = 187  RStudent = -0.541 
 Predicted Value = 135962 
 Observation Number = 186  RStudent = 2.3233 
 Predicted Value = 176138 
 Observation Number = 185  RStudent = 1.7958 
 Predicted Value = 188445 
 Observation Number = 184  RStudent = -0.309 
 Predicted Value = 150081 
 Observation Number = 183  RStudent = -0.608 
 Predicted Value = 130816 
 Observation Number = 182  RStudent = 0.0657 
 Predicted Value = 213929 
 Observation Number = 181  RStudent = 0.2433 
 Predicted Value = 157998 
 Observation Number = 180  RStudent = 0.3858 
 Predicted Value = 159233 
 Observation Number = 179  RStudent = 0.7721 
 Predicted Value = 194289 
 Observation Number = 178  RStudent = -0.388 
 Predicted Value = 119875 
 Observation Number = 177  RStudent = 0.2809 
 Predicted Value = 187725 
 Observation Number = 176  RStudent = 1.0415 
 Predicted Value = 152823 
 Observation Number = 175  RStudent = 0.6957 
 Predicted Value = 150149 
 Observation Number = 174  RStudent = -1.791 
 Predicted Value = 124077 
 Observation Number = 173  RStudent = -0.246 
 Predicted Value = 177011 
 Observation Number = 172  RStudent = -0.389 
 Predicted Value = 166925 
 Observation Number = 171  RStudent = -0.05 
 Predicted Value = 172328 
 Observation Number = 170  RStudent = 1.6156 
 Predicted Value = 99444 
 Observation Number = 169  RStudent = -2.598 
 Predicted Value = 146278 
 Observation Number = 168  RStudent = 0.8043 
 Predicted Value = 131773 
 Observation Number = 167  RStudent = 1.4426 
 Predicted Value = 144609 
 Observation Number = 166  RStudent = 0.6022 
 Predicted Value = 130144 
 Observation Number = 165  RStudent = 0.4568 
 Predicted Value = 122944 
 Observation Number = 164  RStudent = -0.296 
 Predicted Value = 96774 
 Observation Number = 163  RStudent = -1.108 
 Predicted Value = 155767 
 Observation Number = 162  RStudent = -0.212 
 Predicted Value = 144481 
 Observation Number = 161  RStudent = -0.686 
 Predicted Value = 121323 
 Observation Number = 160  RStudent = 0.1979 
 Predicted Value = 151736 
 Observation Number = 159  RStudent = -1.008 
 Predicted Value = 95514 
 Observation Number = 158  RStudent = -0.611 
 Predicted Value = 135112 
 Observation Number = 157  RStudent = -0.613 
 Predicted Value = 117496 
 Observation Number = 156  RStudent = 0.0597 
 Predicted Value = 118026 
 Observation Number = 155  RStudent = -0.724 
 Predicted Value = 111453 
 Observation Number = 154  RStudent = 0.5206 
 Predicted Value = 146410 
 Observation Number = 153  RStudent = 1.0819 
 Predicted Value = 159203 
 Observation Number = 152  RStudent = 2.5927 
 Predicted Value = 193681 
 Observation Number = 151  RStudent = -0.268 
 Predicted Value = 133938 
 Observation Number = 150  RStudent = 0.6909 
 Predicted Value = 116236 
 Observation Number = 149  RStudent = 0.7822 
 Predicted Value = 122195 
 Observation Number = 148  RStudent = -1.274 
 Predicted Value = 103167 
 Observation Number = 147  RStudent = -0.925 
 Predicted Value = 104544 
 Observation Number = 146  RStudent = -0.118 
 Predicted Value = 70440 
 Observation Number = 145  RStudent = 0.3203 
 Predicted Value = 122749 
 Observation Number = 144  RStudent = 0.1505 
 Predicted Value = 78839 
 Observation Number = 143  RStudent = 0.2992 
 Predicted Value = 123145 
 Observation Number = 142  RStudent = 0.0969 
 Predicted Value = 125905 
 Observation Number = 141  RStudent = 0.3984 
 Predicted Value = 148418 
 Observation Number = 140  RStudent = -0.006 
 Predicted Value = 126007 
 Observation Number = 139  RStudent = 0.4093 
 Predicted Value = 141227 
 Observation Number = 138  RStudent = -0.232 
 Predicted Value = 93666 
 Observation Number = 137  RStudent = 0.0735 
 Predicted Value = 128787 
 Observation Number = 136  RStudent = 0.051 
 Predicted Value = 184164 
 Observation Number = 135  RStudent = -0.436 
 Predicted Value = 147208 
 Observation Number = 134  RStudent = -1.124 
 Predicted Value = 142604 
 Observation Number = 133  RStudent = 0.2523 
 Predicted Value = 160822 
 Observation Number = 132  RStudent = -0.001 
 Predicted Value = 87024 
 Observation Number = 131  RStudent = -0.689 
 Predicted Value = 63322 
 Observation Number = 130  RStudent = -0.038 
 Predicted Value = 73125 
 Observation Number = 129  RStudent = -0.37 
 Predicted Value = 147091 
 Observation Number = 128  RStudent = 0.9959 
 Predicted Value = 129033 
 Observation Number = 127  RStudent = 2.2477 
 Predicted Value = 141718 
 Observation Number = 126  RStudent = 0.0079 
 Predicted Value = 134870 
 Observation Number = 125  RStudent = 0.4351 
 Predicted Value = 152866 
 Observation Number = 124  RStudent = 5.748 
 Predicted Value = 200551 
 Observation Number = 123  RStudent = 0.4801 
 Predicted Value = 164037 
 Observation Number = 122  RStudent = -0.261 
 Predicted Value = 200287 
 Observation Number = 121  RStudent = 0.0124 
 Predicted Value = 191798 
 Observation Number = 120  RStudent = -0.553 
 Predicted Value = 154939 
 Observation Number = 119  RStudent = 0.1462 
 Predicted Value = 138622 
 Observation Number = 118  RStudent = 0.2441 
 Predicted Value = 171990 
 Observation Number = 117  RStudent = 0.7096 
 Predicted Value = 195301 
 Observation Number = 116  RStudent = -1.276 
 Predicted Value = 110479 
 Observation Number = 115  RStudent = -1.475 
 Predicted Value = 135303 
 Observation Number = 114  RStudent = 0.3988 
 Predicted Value = 175298 
 Observation Number = 113  RStudent = -0.421 
 Predicted Value = 186946 
 Observation Number = 112  RStudent = 0.3014 
 Predicted Value = 107082 
 Observation Number = 111  RStudent = -1.423 
 Predicted Value = 120045 
 Observation Number = 110  RStudent = -0.6 
 Predicted Value = 169884 
 Observation Number = 109  RStudent = 0.8874 
 Predicted Value = 115360 
 Observation Number = 108  RStudent = -0.723 
 Predicted Value = 176900 
 Observation Number = 107  RStudent = 2.1239 
 Predicted Value = 185162 
 Observation Number = 106  RStudent = -0.042 
 Predicted Value = 214188 
 Observation Number = 105  RStudent = -0.133 
 Predicted Value = 203186 
 Observation Number = 104  RStudent = -1.148 
 Predicted Value = 133786 
 Observation Number = 103  RStudent = 1.4989 
 Predicted Value = 112488 
 Observation Number = 102  RStudent = 1.8253 
 Predicted Value = 117604 
 Observation Number = 101  RStudent = 0.3218 
 Predicted Value = 54759 
 Observation Number = 100  RStudent = -0.24 
 Predicted Value = 125984 
 Observation Number = 99  RStudent = -0.636 
 Predicted Value = 120448 
 Observation Number = 98  RStudent = -1.101 
 Predicted Value = 99933 
 Observation Number = 97  RStudent = 0.0618 
 Predicted Value = 144484 
 Observation Number = 96  RStudent = -0.674 
 Predicted Value = 178073 
 Observation Number = 95  RStudent = -0.26 
 Predicted Value = 112251 
 Observation Number = 94  RStudent = 0.0423 
 Predicted Value = 143305 
 Observation Number = 93  RStudent = 0.141 
 Predicted Value = 200670 
 Observation Number = 92  RStudent = -0.721 
 Predicted Value = 198875 
 Observation Number = 91  RStudent = -0.226 
 Predicted Value = 195716 
 Observation Number = 90  RStudent = -1.004 
 Predicted Value = 121524 
 Observation Number = 89  RStudent = -0.302 
 Predicted Value = 88897 
 Observation Number = 88  RStudent = -0.686 
 Predicted Value = 136292 
 Observation Number = 87  RStudent = -0.811 
 Predicted Value = 134898 
 Observation Number = 86  RStudent = 1.6045 
 Predicted Value = 123582 
 Observation Number = 85  RStudent = -1.272 
 Predicted Value = 124528 
 Observation Number = 84  RStudent = -0.872 
 Predicted Value = 74232 
 Observation Number = 83  RStudent = 1.0314 
 Predicted Value = 104038 
 Observation Number = 82  RStudent = 0.4945 
 Predicted Value = 140905 
 Observation Number = 81  RStudent = 0.5512 
 Predicted Value = 109947 
 Observation Number = 80  RStudent = 0.8356 
 Predicted Value = 85719 
 Observation Number = 79  RStudent = 0.1746 
 Predicted Value = 88422 
 Observation Number = 78  RStudent = -1.344 
 Predicted Value = 66909 
 Observation Number = 77  RStudent = 1.437 
 Predicted Value = 105721 
 Observation Number = 76  RStudent = 0.2476 
 Predicted Value = 140907 
 Observation Number = 75  RStudent = 0.2138 
 Predicted Value = 124462 
 Observation Number = 74  RStudent = 0.9284 
 Predicted Value = 128162 
 Observation Number = 73  RStudent = -0.992 
 Predicted Value = 170397 
 Observation Number = 72  RStudent = 0.191 
 Predicted Value = 102877 
 Observation Number = 71  RStudent = -0.334 
 Predicted Value = 64475 
 Observation Number = 70  RStudent = -0.609 
 Predicted Value = 109979 
 Observation Number = 69  RStudent = -1.502 
 Predicted Value = 127136 
 Observation Number = 68  RStudent = 0.8514 
 Predicted Value = 98932 
 Observation Number = 67  RStudent = 0.1691 
 Predicted Value = 152203 
 Observation Number = 66  RStudent = -1.161 
 Predicted Value = 178163 
 Observation Number = 65  RStudent = -0.81 
 Predicted Value = 123422 
 Observation Number = 64  RStudent = 0.4981 
 Predicted Value = 74323 
 Observation Number = 63  RStudent = -0.224 
 Predicted Value = 125718 
 Observation Number = 62  RStudent = 0.2421 
 Predicted Value = 149989 
 Observation Number = 61  RStudent = -0.633 
 Predicted Value = 171983 
 Observation Number = 60  RStudent = -0.417 
 Predicted Value = 168816 
 Observation Number = 59  RStudent = -2.284 
 Predicted Value = 182308 
 Observation Number = 58  RStudent = -0.76 
 Predicted Value = 201523 
 Observation Number = 57  RStudent = -0.835 
 Predicted Value = 166729 
 Observation Number = 56  RStudent = -0.285 
 Predicted Value = 146606 
 Observation Number = 55  RStudent = 2.6147 
 Predicted Value = 202412 
 Observation Number = 54  RStudent = 0.9113 
 Predicted Value = 153154 
 Observation Number = 53  RStudent = 0.8783 
 Predicted Value = 152705 
 Observation Number = 52  RStudent = 0.7398 
 Predicted Value = 195329 
 Observation Number = 51  RStudent = -0.037 
 Predicted Value = 174603 
 Observation Number = 50  RStudent = 0.9221 
 Predicted Value = 197322 
 Observation Number = 49  RStudent = -1.432 
 Predicted Value = 161437 
 Observation Number = 48  RStudent = -0.871 
 Predicted Value = 111350 
 Observation Number = 47  RStudent = 0.2933 
 Predicted Value = 119667 
 Observation Number = 46  RStudent = 0.9272 
 Predicted Value = 140685 
 Observation Number = 45  RStudent = -0.042 
 Predicted Value = 149185 
 Observation Number = 44  RStudent = 0.2333 
 Predicted Value = 161139 
 Observation Number = 43  RStudent = 0.023 
 Predicted Value = 157620 
 Observation Number = 42  RStudent = 0.6911 
 Predicted Value = 162657 
 Observation Number = 41  RStudent = 0.4899 
 Predicted Value = 160512 
 Observation Number = 40  RStudent = -1.263 
 Predicted Value = 177721 
 Observation Number = 39  RStudent = -0.349 
 Predicted Value = 163367 
 Observation Number = 38  RStudent = -0.68 
 Predicted Value = 130671 
 Observation Number = 37  RStudent = -1.345 
 Predicted Value = 195539 
 Observation Number = 36  RStudent = 0.8848 
 Predicted Value = 175435 
 Observation Number = 35  RStudent = 0.8192 
 Predicted Value = 112473 
 Observation Number = 34  RStudent = 1.2151 
 Predicted Value = 65034 
 Observation Number = 33  RStudent = 0.5325 
 Predicted Value = 204219 
 Observation Number = 32  RStudent = -0.057 
 Predicted Value = 143939 
 Observation Number = 31  RStudent = 0.0543 
 Predicted Value = 142858 
 Observation Number = 30  RStudent = 0.4669 
 Predicted Value = 151303 
 Observation Number = 29  RStudent = 1.1524 
 Predicted Value = 135960 
 Observation Number = 28  RStudent = -3.108 
 Predicted Value = 164686 
 Observation Number = 27  RStudent = 0.6538 
 Predicted Value = 175204 
 Observation Number = 26  RStudent = -0.822 
 Predicted Value = 173774 
 Observation Number = 25  RStudent = 0.6276 
 Predicted Value = 147827 
 Observation Number = 24  RStudent = 1.2492 
 Predicted Value = 117327 
 Observation Number = 23  RStudent = 1.4004 
 Predicted Value = 71389 
 Observation Number = 22  RStudent = -1.478 
 Predicted Value = 123941 
 Observation Number = 21  RStudent = -0.058 
 Predicted Value = 124845 
 Observation Number = 20  RStudent = -0.067 
 Predicted Value = 120117 
 Observation Number = 19  RStudent = -0.645 
 Predicted Value = 90640 
 Observation Number = 18  RStudent = -0.562 
 Predicted Value = 200736 
 Observation Number = 17  RStudent = 0.5539 
 Predicted Value = 125742 
 Observation Number = 16  RStudent = 0.1534 
 Predicted Value = 151461 
 Observation Number = 15  RStudent = 0.5434 
 Predicted Value = 126013 
 Observation Number = 14  RStudent = 1.6568 
 Predicted Value = 150725 
 Observation Number = 13  RStudent = -1.126 
 Predicted Value = 150512 
 Observation Number = 12  RStudent = 0.1557 
 Predicted Value = 125422 
 Observation Number = 11  RStudent = 0.102 
 Predicted Value = 140447 
 Observation Number = 10  RStudent = 1.4757 
 Predicted Value = 156223 
 Observation Number = 9  RStudent = 0.3623 
 Predicted Value = 153008 
 Observation Number = 8  RStudent = 1.9247 
 Predicted Value = 174737 
 Observation Number = 7  RStudent = -0.057 
 Predicted Value = 125932 
 Observation Number = 6  RStudent = 1.3215 
 Predicted Value = 158491 
 Observation Number = 5  RStudent = -0.583 
 Predicted Value = 169598 
 Observation Number = 4  RStudent = 0.6395 
 Predicted Value = 104541 
 Observation Number = 3  RStudent = 0.6796 
 Predicted Value = 180284 
 Observation Number = 2  RStudent = 1.7309 
 Predicted Value = 185283 
 Observation Number = 1  Y = 2  Y = -2
 Cook's D = .00059 
 Observation Number = 300  Cook's D = 0.0085 
 Observation Number = 299  Cook's D = 0.0068 
 Observation Number = 298  Cook's D = .00082 
 Observation Number = 297  Cook's D = 0.0015 
 Observation Number = 296  Cook's D = .00026 
 Observation Number = 295  Cook's D = 0.0177 
 Observation Number = 294  Cook's D = 0.0032 
 Observation Number = 293  Cook's D = 0.0284 
 Observation Number = 292  Cook's D = 0.0002 
 Observation Number = 291  Cook's D = 0.0015 
 Observation Number = 290  Cook's D = .00008 
 Observation Number = 289  Cook's D = 0.0038 
 Observation Number = 288  Cook's D = 1.4E-6 
 Observation Number = 287  Cook's D = 0.0018 
 Observation Number = 286  Cook's D = 0.0187 
 Observation Number = 285  Cook's D = 0.0035 
 Observation Number = 284  Cook's D = 0.0015 
 Observation Number = 283  Cook's D = .00059 
 Observation Number = 282  Cook's D = .00054 
 Observation Number = 281  Cook's D = 0.0018 
 Observation Number = 280  Cook's D = 1.9E-7 
 Observation Number = 279  Cook's D = 0.008 
 Observation Number = 278  Cook's D = 0.0017 
 Observation Number = 277  Cook's D = 0.0012 
 Observation Number = 276  Cook's D = .00063 
 Observation Number = 275  Cook's D = 0.0011 
 Observation Number = 274  Cook's D = 0.0046 
 Observation Number = 273  Cook's D = .00042 
 Observation Number = 272  Cook's D = 2.1E-5 
 Observation Number = 271  Cook's D = .00007 
 Observation Number = 270  Cook's D = .00084 
 Observation Number = 269  Cook's D = 0.001 
 Observation Number = 268  Cook's D = 0.0023 
 Observation Number = 267  Cook's D = 0.0025 
 Observation Number = 266  Cook's D = 0.0037 
 Observation Number = 265  Cook's D = 1.4E-5 
 Observation Number = 264  Cook's D = .00062 
 Observation Number = 263  Cook's D = 0.0019 
 Observation Number = 262  Cook's D = 0.0011 
 Observation Number = 261  Cook's D = 0.0058 
 Observation Number = 260  Cook's D = .00016 
 Observation Number = 259  Cook's D = 0.0021 
 Observation Number = 258  Cook's D = .00026 
 Observation Number = 257  Cook's D = .00028 
 Observation Number = 256  Cook's D = 1.5E-6 
 Observation Number = 255  Cook's D = 0.0046 
 Observation Number = 254  Cook's D = 0.0002 
 Observation Number = 253  Cook's D = 0.004 
 Observation Number = 252  Cook's D = 0.0013 
 Observation Number = 251  Cook's D = 0.0036 
 Observation Number = 250  Cook's D = 0.0032 
 Observation Number = 249  Cook's D = .00015 
 Observation Number = 248  Cook's D = .00037 
 Observation Number = 247  Cook's D = 0.0022 
 Observation Number = 246  Cook's D = .00014 
 Observation Number = 245  Cook's D = .00013 
 Observation Number = 244  Cook's D = 0.0012 
 Observation Number = 243  Cook's D = 0.0193 
 Observation Number = 242  Cook's D = 0.003 
 Observation Number = 241  Cook's D = 0.0511 
 Observation Number = 240  Cook's D = 0.0059 
 Observation Number = 239  Cook's D = 0.0066 
 Observation Number = 238  Cook's D = .00064 
 Observation Number = 237  Cook's D = 0.0018 
 Observation Number = 236  Cook's D = 0.0011 
 Observation Number = 235  Cook's D = .00063 
 Observation Number = 234  Cook's D = 0.0251 
 Observation Number = 233  Cook's D = .00069 
 Observation Number = 232  Cook's D = 0.0064 
 Observation Number = 231  Cook's D = 0.0039 
 Observation Number = 230  Cook's D = .00037 
 Observation Number = 229  Cook's D = 0.0015 
 Observation Number = 228  Cook's D = 0.0253 
 Observation Number = 227  Cook's D = 0.0022 
 Observation Number = 226  Cook's D = 0.003 
 Observation Number = 225  Cook's D = .00099 
 Observation Number = 224  Cook's D = .00014 
 Observation Number = 223  Cook's D = 5.2E-5 
 Observation Number = 222  Cook's D = .00064 
 Observation Number = 221  Cook's D = 0.0018 
 Observation Number = 220  Cook's D = 0.0026 
 Observation Number = 219  Cook's D = 0.0903 
 Observation Number = 218  Cook's D = 0.0012 
 Observation Number = 217  Cook's D = 0.0083 
 Observation Number = 216  Cook's D = .00034 
 Observation Number = 215  Cook's D = 0.0017 
 Observation Number = 214  Cook's D = 0.0182 
 Observation Number = 213  Cook's D = 9.3E-5 
 Observation Number = 212  Cook's D = 0.0062 
 Observation Number = 211  Cook's D = 0.0023 
 Observation Number = 210  Cook's D = .00043 
 Observation Number = 209  Cook's D = 0.0003 
 Observation Number = 208  Cook's D = 0.0016 
 Observation Number = 207  Cook's D = 0.0022 
 Observation Number = 206  Cook's D = .00025 
 Observation Number = 205  Cook's D = .00016 
 Observation Number = 204  Cook's D = 0.0029 
 Observation Number = 203  Cook's D = 0.0035 
 Observation Number = 202  Cook's D = .00011 
 Observation Number = 201  Cook's D = 0.0005 
 Observation Number = 200  Cook's D = 6E-6 
 Observation Number = 199  Cook's D = .00034 
 Observation Number = 198  Cook's D = 0.002 
 Observation Number = 197  Cook's D = .00007 
 Observation Number = 196  Cook's D = .00029 
 Observation Number = 195  Cook's D = .00017 
 Observation Number = 194  Cook's D = 4.5E-5 
 Observation Number = 193  Cook's D = .00015 
 Observation Number = 192  Cook's D = .00017 
 Observation Number = 191  Cook's D = 3.8E-5 
 Observation Number = 190  Cook's D = .00021 
 Observation Number = 189  Cook's D = .00048 
 Observation Number = 188  Cook's D = .00038 
 Observation Number = 187  Cook's D = .00038 
 Observation Number = 186  Cook's D = 0.0264 
 Observation Number = 185  Cook's D = 0.0054 
 Observation Number = 184  Cook's D = .00035 
 Observation Number = 183  Cook's D = .00056 
 Observation Number = 182  Cook's D = 2.4E-5 
 Observation Number = 181  Cook's D = .00019 
 Observation Number = 180  Cook's D = .00095 
 Observation Number = 179  Cook's D = 0.0016 
 Observation Number = 178  Cook's D = .00051 
 Observation Number = 177  Cook's D = .00023 
 Observation Number = 176  Cook's D = 0.0022 
 Observation Number = 175  Cook's D = 0.0025 
 Observation Number = 174  Cook's D = 0.0138 
 Observation Number = 173  Cook's D = .00035 
 Observation Number = 172  Cook's D = .00033 
 Observation Number = 171  Cook's D = 4.3E-6 
 Observation Number = 170  Cook's D = 0.0059 
 Observation Number = 169  Cook's D = 0.02 
 Observation Number = 168  Cook's D = 0.002 
 Observation Number = 167  Cook's D = 0.0125 
 Observation Number = 166  Cook's D = 0.0016 
 Observation Number = 165  Cook's D = .00036 
 Observation Number = 164  Cook's D = .00028 
 Observation Number = 163  Cook's D = 0.0026 
 Observation Number = 162  Cook's D = .00016 
 Observation Number = 161  Cook's D = .00098 
 Observation Number = 160  Cook's D = 0.0001 
 Observation Number = 159  Cook's D = 0.0039 
 Observation Number = 158  Cook's D = .00063 
 Observation Number = 157  Cook's D = 0.002 
 Observation Number = 156  Cook's D = 1.9E-5 
 Observation Number = 155  Cook's D = 0.0022 
 Observation Number = 154  Cook's D = .00063 
 Observation Number = 153  Cook's D = 0.0032 
 Observation Number = 152  Cook's D = 0.0563 
 Observation Number = 151  Cook's D = .00012 
 Observation Number = 150  Cook's D = 0.0025 
 Observation Number = 149  Cook's D = 0.0026 
 Observation Number = 148  Cook's D = 0.0075 
 Observation Number = 147  Cook's D = 0.0049 
 Observation Number = 146  Cook's D = 6.3E-5 
 Observation Number = 145  Cook's D = .00042 
 Observation Number = 144  Cook's D = .00011 
 Observation Number = 143  Cook's D = .00061 
 Observation Number = 142  Cook's D = .00003 
 Observation Number = 141  Cook's D = .00032 
 Observation Number = 140  Cook's D = 6.4E-8 
 Observation Number = 139  Cook's D = .00028 
 Observation Number = 138  Cook's D = .00034 
 Observation Number = 137  Cook's D = 1.3E-5 
 Observation Number = 136  Cook's D = 10E-6 
 Observation Number = 135  Cook's D = 0.0003 
 Observation Number = 134  Cook's D = 0.0013 
 Observation Number = 133  Cook's D = 9.6E-5 
 Observation Number = 132  Cook's D = 3.6E-9 
 Observation Number = 131  Cook's D = 0.0015 
 Observation Number = 130  Cook's D = 5.1E-6 
 Observation Number = 129  Cook's D = .00045 
 Observation Number = 128  Cook's D = 0.0015 
 Observation Number = 127  Cook's D = 0.0152 
 Observation Number = 126  Cook's D = 2.2E-7 
 Observation Number = 125  Cook's D = .00076 
 Observation Number = 124  Cook's D = 0.1092 
 Observation Number = 123  Cook's D = .00098 
 Observation Number = 122  Cook's D = .00025 
 Observation Number = 121  Cook's D = 9.1E-7 
 Observation Number = 120  Cook's D = 0.0024 
 Observation Number = 119  Cook's D = .00013 
 Observation Number = 118  Cook's D = .00021 
 Observation Number = 117  Cook's D = 0.0012 
 Observation Number = 116  Cook's D = 0.0042 
 Observation Number = 115  Cook's D = 0.0097 
 Observation Number = 114  Cook's D = .00025 
 Observation Number = 113  Cook's D = .00045 
 Observation Number = 112  Cook's D = .00048 
 Observation Number = 111  Cook's D = 0.0128 
 Observation Number = 110  Cook's D = 0.0009 
 Observation Number = 109  Cook's D = 0.0017 
 Observation Number = 108  Cook's D = 0.0014 
 Observation Number = 107  Cook's D = 0.0089 
 Observation Number = 106  Cook's D = 8.6E-6 
 Observation Number = 105  Cook's D = 4.8E-5 
 Observation Number = 104  Cook's D = 0.0051 
 Observation Number = 103  Cook's D = 0.0084 
 Observation Number = 102  Cook's D = 0.0095 
 Observation Number = 101  Cook's D = 0.0006 
 Observation Number = 100  Cook's D = 7.6E-5 
 Observation Number = 99  Cook's D = 0.0013 
 Observation Number = 98  Cook's D = 0.0064 
 Observation Number = 97  Cook's D = 1.4E-5 
 Observation Number = 96  Cook's D = 0.0016 
 Observation Number = 95  Cook's D = .00036 
 Observation Number = 94  Cook's D = 6.3E-6 
 Observation Number = 93  Cook's D = 4.1E-5 
 Observation Number = 92  Cook's D = 0.0025 
 Observation Number = 91  Cook's D = .00017 
 Observation Number = 90  Cook's D = 0.0028 
 Observation Number = 89  Cook's D = .00062 
 Observation Number = 88  Cook's D = 0.0014 
 Observation Number = 87  Cook's D = 0.0011 
 Observation Number = 86  Cook's D = 0.0072 
 Observation Number = 85  Cook's D = 0.0039 
 Observation Number = 84  Cook's D = 0.0036 
 Observation Number = 83  Cook's D = 0.003 
 Observation Number = 82  Cook's D = 0.0011 
 Observation Number = 81  Cook's D = 0.0011 
 Observation Number = 80  Cook's D = 0.0016 
 Observation Number = 79  Cook's D = .00008 
 Observation Number = 78  Cook's D = 0.0086 
 Observation Number = 77  Cook's D = 0.0129 
 Observation Number = 76  Cook's D = .00012 
 Observation Number = 75  Cook's D = 7.3E-5 
 Observation Number = 74  Cook's D = 0.0015 
 Observation Number = 73  Cook's D = 0.0016 
 Observation Number = 72  Cook's D = .00018 
 Observation Number = 71  Cook's D = .00042 
 Observation Number = 70  Cook's D = .00064 
 Observation Number = 69  Cook's D = 0.0164 
 Observation Number = 68  Cook's D = 0.0013 
 Observation Number = 67  Cook's D = 5.4E-5 
 Observation Number = 66  Cook's D = 0.0025 
 Observation Number = 65  Cook's D = .00081 
 Observation Number = 64  Cook's D = 0.0009 
 Observation Number = 63  Cook's D = 6.1E-5 
 Observation Number = 62  Cook's D = .00008 
 Observation Number = 61  Cook's D = .00056 
 Observation Number = 60  Cook's D = .00083 
 Observation Number = 59  Cook's D = 0.014 
 Observation Number = 58  Cook's D = 0.0015 
 Observation Number = 57  Cook's D = 0.0021 
 Observation Number = 56  Cook's D = .00062 
 Observation Number = 55  Cook's D = 0.0186 
 Observation Number = 54  Cook's D = 0.0045 
 Observation Number = 53  Cook's D = 0.0044 
 Observation Number = 52  Cook's D = 0.0016 
 Observation Number = 51  Cook's D = 6.8E-6 
 Observation Number = 50  Cook's D = 0.0023 
 Observation Number = 49  Cook's D = 0.0073 
 Observation Number = 48  Cook's D = 0.002 
 Observation Number = 47  Cook's D = .00024 
 Observation Number = 46  Cook's D = 0.0016 
 Observation Number = 45  Cook's D = 1.4E-5 
 Observation Number = 44  Cook's D = 8.9E-5 
 Observation Number = 43  Cook's D = 7.9E-7 
 Observation Number = 42  Cook's D = 0.0017 
 Observation Number = 41  Cook's D = 0.0013 
 Observation Number = 40  Cook's D = 0.0052 
 Observation Number = 39  Cook's D = 0.002 
 Observation Number = 38  Cook's D = 0.0015 
 Observation Number = 37  Cook's D = 0.0063 
 Observation Number = 36  Cook's D = 0.0021 
 Observation Number = 35  Cook's D = 0.0013 
 Observation Number = 34  Cook's D = 0.0061 
 Observation Number = 33  Cook's D = 0.0007 
 Observation Number = 32  Cook's D = 1.2E-5 
 Observation Number = 31  Cook's D = .00001 
 Observation Number = 30  Cook's D = .00056 
 Observation Number = 29  Cook's D = 0.002 
 Observation Number = 28  Cook's D = 0.0118 
 Observation Number = 27  Cook's D = .00088 
 Observation Number = 26  Cook's D = 0.002 
 Observation Number = 25  Cook's D = 0.0027 
 Observation Number = 24  Cook's D = 0.0035 
 Observation Number = 23  Cook's D = 0.0141 
 Observation Number = 22  Cook's D = 0.0137 
 Observation Number = 21  Cook's D = 1.6E-5 
 Observation Number = 20  Cook's D = 7.6E-6 
 Observation Number = 19  Cook's D = .00094 
 Observation Number = 18  Cook's D = 0.0058 
 Observation Number = 17  Cook's D = 0.0014 
 Observation Number = 16  Cook's D = 3.8E-5 
 Observation Number = 15  Cook's D = .00052 
 Observation Number = 14  Cook's D = 0.005 
 Observation Number = 13  Cook's D = 0.0035 
 Observation Number = 12  Cook's D = 3.7E-5 
 Observation Number = 11  Cook's D = 3.4E-5 
 Observation Number = 10  Cook's D = 0.0049 
 Observation Number = 9  Cook's D = .00024 
 Observation Number = 8  Cook's D = 0.0178 
 Observation Number = 7  Cook's D = 2.1E-5 
 Observation Number = 6  Cook's D = 0.009 
 Observation Number = 5  Cook's D = .00092 
 Observation Number = 4  Cook's D = 0.0019 
 Observation Number = 3  Cook's D = 0.001 
 Observation Number = 2  Cook's D = 0.0126 
 Observation Number = 1  Y = 0.0133
 Y = -0.327  Y = 0.3266  DFFITS = -0.378 
 Observation Number = 294  DFFITS = -0.481 
 Observation Number = 292  DFFITS = 0.3896 
 Observation Number = 285  DFFITS = -0.396 
 Observation Number = 242  DFFITS = -0.643 
 Observation Number = 240  DFFITS = 0.4492 
 Observation Number = 233  DFFITS = -0.455 
 Observation Number = 227  DFFITS = -0.856 
 Observation Number = 218  DFFITS = -0.383 
 Observation Number = 213  DFFITS = 0.4633 
 Observation Number = 185  DFFITS = -0.334 
 Observation Number = 173  DFFITS = -0.403 
 Observation Number = 168  DFFITS = 0.6774 
 Observation Number = 151  DFFITS = 0.3509 
 Observation Number = 126  DFFITS = 0.9845 
 Observation Number = 123  DFFITS = -0.363 
 Observation Number = 68  DFFITS = -0.337 
 Observation Number = 58  DFFITS = 0.3897 
 Observation Number = 54  DFFITS = 0.3359 
 Observation Number = 22  DFFITS = -0.331 
 Observation Number = 21  DFFITS = 0.3793 
 Observation Number = 7  DFFITS = -0.378 
 Observation Number = 294  DFFITS = -0.481 
 Observation Number = 292  DFFITS = 0.3896 
 Observation Number = 285  DFFITS = -0.396 
 Observation Number = 242  DFFITS = -0.643 
 Observation Number = 240  DFFITS = 0.4492 
 Observation Number = 233  DFFITS = -0.455 
 Observation Number = 227  DFFITS = -0.856 
 Observation Number = 218  DFFITS = -0.383 
 Observation Number = 213  DFFITS = 0.4633 
 Observation Number = 185  DFFITS = -0.334 
 Observation Number = 173  DFFITS = -0.403 
 Observation Number = 168  DFFITS = 0.6774 
 Observation Number = 151  DFFITS = 0.3509 
 Observation Number = 126  DFFITS = 0.9845 
 Observation Number = 123  DFFITS = -0.363 
 Observation Number = 68  DFFITS = -0.337 
 Observation Number = 58  DFFITS = 0.3897 
 Observation Number = 54  DFFITS = 0.3359 
 Observation Number = 22  DFFITS = -0.331 
 Observation Number = 21  DFFITS = 0.3793 
 Observation Number = 7  DFFITS = -0.068 
 Observation Number = 300  DFFITS = -0.262 
 Observation Number = 299  DFFITS = -0.233 
 Observation Number = 298  DFFITS = 0.0807 
 Observation Number = 297  DFFITS = 0.1104 
 Observation Number = 296  DFFITS = -0.046 
 Observation Number = 295  DFFITS = -0.161 
 Observation Number = 293  DFFITS = 0.0396 
 Observation Number = 291  DFFITS = 0.1081 
 Observation Number = 290  DFFITS = -0.025 
 Observation Number = 289  DFFITS = 0.1732 
 Observation Number = 288  DFFITS = 0.0034 
 Observation Number = 287  DFFITS = 0.1202 
 Observation Number = 286  DFFITS = -0.168 
 Observation Number = 284  DFFITS = -0.11 
 Observation Number = 283  DFFITS = 0.0685 
 Observation Number = 282  DFFITS = -0.066 
 Observation Number = 281  DFFITS = -0.119 
 Observation Number = 280  DFFITS = -0.001 
 Observation Number = 279  DFFITS = -0.255 
 Observation Number = 278  DFFITS = -0.115 
 Observation Number = 277  DFFITS = 0.0989 
 Observation Number = 276  DFFITS = -0.071 
 Observation Number = 275  DFFITS = 0.0923 
 Observation Number = 274  DFFITS = 0.191 
 Observation Number = 273  DFFITS = -0.058 
 Observation Number = 272  DFFITS = 0.0131 
 Observation Number = 271  DFFITS = 0.0237 
 Observation Number = 270  DFFITS = -0.082 
 Observation Number = 269  DFFITS = 0.0914 
 Observation Number = 268  DFFITS = 0.1364 
 Observation Number = 267  DFFITS = 0.1406 
 Observation Number = 266  DFFITS = -0.171 
 Observation Number = 265  DFFITS = -0.011 
 Observation Number = 264  DFFITS = 0.0706 
 Observation Number = 263  DFFITS = -0.122 
 Observation Number = 262  DFFITS = -0.092 
 Observation Number = 261  DFFITS = -0.215 
 Observation Number = 260  DFFITS = -0.036 
 Observation Number = 259  DFFITS = -0.129 
 Observation Number = 258  DFFITS = -0.046 
 Observation Number = 257  DFFITS = 0.0476 
 Observation Number = 256  DFFITS = -0.003 
 Observation Number = 255  DFFITS = 0.1918 
 Observation Number = 254  DFFITS = -0.04 
 Observation Number = 253  DFFITS = -0.18 
 Observation Number = 252  DFFITS = -0.104 
 Observation Number = 251  DFFITS = -0.17 
 Observation Number = 250  DFFITS = -0.16 
 Observation Number = 249  DFFITS = 0.0347 
 Observation Number = 248  DFFITS = 0.0543 
 Observation Number = 247  DFFITS = 0.1331 
 Observation Number = 246  DFFITS = -0.033 
 Observation Number = 245  DFFITS = 0.0321 
 Observation Number = 244  DFFITS = -0.097 
 Observation Number = 243  DFFITS = -0.156 
 Observation Number = 241  DFFITS = -0.217 
 Observation Number = 239  DFFITS = 0.2296 
 Observation Number = 238  DFFITS = -0.072 
 Observation Number = 237  DFFITS = -0.12 
 Observation Number = 236  DFFITS = 0.0945 
 Observation Number = 235  DFFITS = -0.071 
 Observation Number = 234  DFFITS = 0.0742 
 Observation Number = 232  DFFITS = 0.2267 
 Observation Number = 231  DFFITS = 0.1761 
 Observation Number = 230  DFFITS = 0.0542 
 Observation Number = 229  DFFITS = -0.11 
 Observation Number = 228  DFFITS = -0.131 
 Observation Number = 226  DFFITS = 0.1545 
 Observation Number = 225  DFFITS = 0.0891 
 Observation Number = 224  DFFITS = -0.033 
 Observation Number = 223  DFFITS = 0.0203 
 Observation Number = 222  DFFITS = -0.071 
 Observation Number = 221  DFFITS = -0.118 
 Observation Number = 220  DFFITS = -0.144 
 Observation Number = 219  DFFITS = -0.098 
 Observation Number = 217  DFFITS = 0.2583 
 Observation Number = 216  DFFITS = -0.052 
 Observation Number = 215  DFFITS = 0.1173 
 Observation Number = 214  DFFITS = 0.0272 
 Observation Number = 212  DFFITS = 0.2246 
 Observation Number = 211  DFFITS = 0.1347 
 Observation Number = 210  DFFITS = -0.059 
 Observation Number = 209  DFFITS = 0.0486 
 Observation Number = 208  DFFITS = 0.1126 
 Observation Number = 207  DFFITS = -0.132 
 Observation Number = 206  DFFITS = -0.044 
 Observation Number = 205  DFFITS = -0.036 
 Observation Number = 204  DFFITS = -0.152 
 Observation Number = 203  DFFITS = 0.1667 
 Observation Number = 202  DFFITS = 0.0301 
 Observation Number = 201  DFFITS = 0.0631 
 Observation Number = 200  DFFITS = 0.0069 
 Observation Number = 199  DFFITS = 0.052 
 Observation Number = 198  DFFITS = 0.1271 
 Observation Number = 197  DFFITS = 0.0236 
 Observation Number = 196  DFFITS = 0.0484 
 Observation Number = 195  DFFITS = -0.037 
 Observation Number = 194  DFFITS = 0.019 
 Observation Number = 193  DFFITS = -0.035 
 Observation Number = 192  DFFITS = -0.037 
 Observation Number = 191  DFFITS = -0.017 
 Observation Number = 190  DFFITS = 0.0414 
 Observation Number = 189  DFFITS = -0.062 
 Observation Number = 188  DFFITS = -0.055 
 Observation Number = 187  DFFITS = -0.055 
 Observation Number = 186  DFFITS = 0.2093 
 Observation Number = 184  DFFITS = -0.053 
 Observation Number = 183  DFFITS = -0.067 
 Observation Number = 182  DFFITS = 0.0137 
 Observation Number = 181  DFFITS = 0.0386 
 Observation Number = 180  DFFITS = 0.0871 
 Observation Number = 179  DFFITS = 0.1147 
 Observation Number = 178  DFFITS = -0.064 
 Observation Number = 177  DFFITS = 0.0427 
 Observation Number = 176  DFFITS = 0.1339 
 Observation Number = 175  DFFITS = 0.1408 
 Observation Number = 174  DFFITS = -0.053 
 Observation Number = 172  DFFITS = -0.051 
 Observation Number = 171  DFFITS = -0.006 
 Observation Number = 170  DFFITS = 0.2176 
 Observation Number = 169  DFFITS = 0.1251 
 Observation Number = 167  DFFITS = 0.3172 
 Observation Number = 166  DFFITS = 0.1125 
 Observation Number = 165  DFFITS = 0.0536 
 Observation Number = 164  DFFITS = -0.047 
 Observation Number = 163  DFFITS = -0.144 
 Observation Number = 162  DFFITS = -0.036 
 Observation Number = 161  DFFITS = -0.089 
 Observation Number = 160  DFFITS = 0.0283 
 Observation Number = 159  DFFITS = -0.177 
 Observation Number = 158  DFFITS = -0.071 
 Observation Number = 157  DFFITS = -0.127 
 Observation Number = 156  DFFITS = 0.0123 
 Observation Number = 155  DFFITS = -0.134 
 Observation Number = 154  DFFITS = 0.0708 
 Observation Number = 153  DFFITS = 0.1591 
 Observation Number = 152  DFFITS = -0.031 
 Observation Number = 150  DFFITS = 0.1423 
 Observation Number = 149  DFFITS = 0.1437 
 Observation Number = 148  DFFITS = -0.245 
 Observation Number = 147  DFFITS = -0.198 
 Observation Number = 146  DFFITS = -0.022 
 Observation Number = 145  DFFITS = 0.0578 
 Observation Number = 144  DFFITS = 0.0294 
 Observation Number = 143  DFFITS = 0.0695 
 Observation Number = 142  DFFITS = 0.0155 
 Observation Number = 141  DFFITS = 0.0509 
 Observation Number = 140  DFFITS = -71E-5 
 Observation Number = 139  DFFITS = 0.0469 
 Observation Number = 138  DFFITS = -0.052 
 Observation Number = 137  DFFITS = 0.0101 
 Observation Number = 136  DFFITS = 0.0089 
 Observation Number = 135  DFFITS = -0.049 
 Observation Number = 134  DFFITS = -0.102 
 Observation Number = 133  DFFITS = 0.0277 
 Observation Number = 132  DFFITS = -17E-5 
 Observation Number = 131  DFFITS = -0.109 
 Observation Number = 130  DFFITS = -0.006 
 Observation Number = 129  DFFITS = -0.06 
 Observation Number = 128  DFFITS = 0.1082 
 Observation Number = 127  DFFITS = 0.0013 
 Observation Number = 125  DFFITS = 0.0776 
 Observation Number = 124  DFFITS = 0.0886 
 Observation Number = 122  DFFITS = -0.045 
 Observation Number = 121  DFFITS = 0.0027 
 Observation Number = 120  DFFITS = -0.138 
 Observation Number = 119  DFFITS = 0.0326 
 Observation Number = 118  DFFITS = 0.041 
 Observation Number = 117  DFFITS = 0.0989 
 Observation Number = 116  DFFITS = -0.184 
 Observation Number = 115  DFFITS = -0.279 
 Observation Number = 114  DFFITS = 0.0443 
 Observation Number = 113  DFFITS = -0.06 
 Observation Number = 112  DFFITS = 0.0617 
 Observation Number = 111  DFFITS = -0.321 
 Observation Number = 110  DFFITS = -0.085 
 Observation Number = 109  DFFITS = 0.1159 
 Observation Number = 108  DFFITS = -0.107 
 Observation Number = 107  DFFITS = 0.2682 
 Observation Number = 106  DFFITS = -0.008 
 Observation Number = 105  DFFITS = -0.019 
 Observation Number = 104  DFFITS = -0.203 
 Observation Number = 103  DFFITS = 0.2593 
 Observation Number = 102  DFFITS = 0.2768 
 Observation Number = 101  DFFITS = 0.069 
 Observation Number = 100  DFFITS = -0.025 
 Observation Number = 99  DFFITS = -0.104 
 Observation Number = 98  DFFITS = -0.227 
 Observation Number = 97  DFFITS = 0.0104 
 Observation Number = 96  DFFITS = -0.112 
 Observation Number = 95  DFFITS = -0.053 
 Observation Number = 94  DFFITS = 0.0071 
 Observation Number = 93  DFFITS = 0.0182 
 Observation Number = 92  DFFITS = -0.142 
 Observation Number = 91  DFFITS = -0.036 
 Observation Number = 90  DFFITS = -0.149 
 Observation Number = 89  DFFITS = -0.07 
 Observation Number = 88  DFFITS = -0.104 
 Observation Number = 87  DFFITS = -0.096 
 Observation Number = 86  DFFITS = 0.2413 
 Observation Number = 85  DFFITS = -0.177 
 Observation Number = 84  DFFITS = -0.171 
 Observation Number = 83  DFFITS = 0.1548 
 Observation Number = 82  DFFITS = 0.0921 
 Observation Number = 81  DFFITS = 0.0923 
 Observation Number = 80  DFFITS = 0.112 
 Observation Number = 79  DFFITS = 0.0253 
 Observation Number = 78  DFFITS = -0.262 
 Observation Number = 77  DFFITS = 0.3223 
 Observation Number = 76  DFFITS = 0.0305 
 Observation Number = 75  DFFITS = 0.0241 
 Observation Number = 74  DFFITS = 0.1096 
 Observation Number = 73  DFFITS = -0.115 
 Observation Number = 72  DFFITS = 0.0374 
 Observation Number = 71  DFFITS = -0.058 
 Observation Number = 70  DFFITS = -0.071 
 Observation Number = 69  DFFITS = 0.1014 
 Observation Number = 67  DFFITS = 0.0208 
 Observation Number = 66  DFFITS = -0.142 
 Observation Number = 65  DFFITS = -0.08 
 Observation Number = 64  DFFITS = 0.085 
 Observation Number = 63  DFFITS = -0.022 
 Observation Number = 62  DFFITS = 0.0252 
 Observation Number = 61  DFFITS = -0.067 
 Observation Number = 60  DFFITS = -0.082 
 Observation Number = 59  DFFITS = -0.108 
 Observation Number = 57  DFFITS = -0.129 
 Observation Number = 56  DFFITS = -0.071 
 Observation Number = 55  DFFITS = 0.1888 
 Observation Number = 53  DFFITS = 0.1866 
 Observation Number = 52  DFFITS = 0.1139 
 Observation Number = 51  DFFITS = -0.007 
 Observation Number = 50  DFFITS = 0.1354 
 Observation Number = 49  DFFITS = -0.242 
 Observation Number = 48  DFFITS = -0.125 
 Observation Number = 47  DFFITS = 0.0434 
 Observation Number = 46  DFFITS = 0.1114 
 Observation Number = 45  DFFITS = -0.011 
 Observation Number = 44  DFFITS = 0.0266 
 Observation Number = 43  DFFITS = 0.0025 
 Observation Number = 42  DFFITS = 0.1172 
 Observation Number = 41  DFFITS = 0.1017 
 Observation Number = 40  DFFITS = -0.205 
 Observation Number = 39  DFFITS = -0.127 
 Observation Number = 38  DFFITS = -0.109 
 Observation Number = 37  DFFITS = -0.224 
 Observation Number = 36  DFFITS = 0.1298 
 Observation Number = 35  DFFITS = 0.1027 
 Observation Number = 34  DFFITS = 0.2214 
 Observation Number = 33  DFFITS = 0.0749 
 Observation Number = 32  DFFITS = -0.01 
 Observation Number = 31  DFFITS = 0.009 
 Observation Number = 30  DFFITS = 0.0668 
 Observation Number = 29  DFFITS = 0.1273 
 Observation Number = 28  DFFITS = -0.311 
 Observation Number = 27  DFFITS = 0.0838 
 Observation Number = 26  DFFITS = -0.125 
 Observation Number = 25  DFFITS = 0.1469 
 Observation Number = 24  DFFITS = 0.1674 
 Observation Number = 23  DFFITS = -0.011 
 Observation Number = 20  DFFITS = -0.008 
 Observation Number = 19  DFFITS = -0.087 
 Observation Number = 18  DFFITS = -0.215 
 Observation Number = 17  DFFITS = 0.1065 
 Observation Number = 16  DFFITS = 0.0174 
 Observation Number = 15  DFFITS = 0.0642 
 Observation Number = 14  DFFITS = 0.2007 
 Observation Number = 13  DFFITS = -0.167 
 Observation Number = 12  DFFITS = 0.0172 
 Observation Number = 11  DFFITS = 0.0164 
 Observation Number = 10  DFFITS = 0.1975 
 Observation Number = 9  DFFITS = 0.0437 
 Observation Number = 8  DFFITS = -0.013 
 Observation Number = 6  DFFITS = 0.2693 
 Observation Number = 5  DFFITS = -0.086 
 Observation Number = 4  DFFITS = 0.1218 
 Observation Number = 3  DFFITS = 0.0903 
 Observation Number = 2  DFFITS = 0.3186 
 Observation Number = 1
 Y = -0.115  Y = 0.1155  Intercept DFBETAS = 0.1308 
 Observation Number = 298  Intercept DFBETAS = -0.211 
 Observation Number = 294  Intercept DFBETAS = 0.2502 
 Observation Number = 292  Intercept DFBETAS = 0.3564 
 Observation Number = 218  Intercept DFBETAS = 0.141 
 Observation Number = 213  Intercept DFBETAS = -0.187 
 Observation Number = 173  Intercept DFBETAS = -0.126 
 Observation Number = 166  Intercept DFBETAS = -0.145 
 Observation Number = 101  Intercept DFBETAS = -0.166 
 Observation Number = 77  Intercept DFBETAS = 0.1337 
 Observation Number = 33  Intercept DFBETAS = 0.1664 
 Observation Number = 27  Intercept DFBETAS = 0.1211 
 Observation Number = 21  Intercept DFBETAS = 0.1308 
 Observation Number = 298  Intercept DFBETAS = -0.211 
 Observation Number = 294  Intercept DFBETAS = 0.2502 
 Observation Number = 292  Intercept DFBETAS = 0.3564 
 Observation Number = 218  Intercept DFBETAS = 0.141 
 Observation Number = 213  Intercept DFBETAS = -0.187 
 Observation Number = 173  Intercept DFBETAS = -0.126 
 Observation Number = 166  Intercept DFBETAS = -0.145 
 Observation Number = 101  Intercept DFBETAS = -0.166 
 Observation Number = 77  Intercept DFBETAS = 0.1337 
 Observation Number = 33  Intercept DFBETAS = 0.1664 
 Observation Number = 27  Intercept DFBETAS = 0.1211 
 Observation Number = 21  Intercept DFBETAS = -0.042 
 Observation Number = 300  Intercept DFBETAS = -0.043 
 Observation Number = 299  Intercept DFBETAS = 0.0457 
 Observation Number = 297  Intercept DFBETAS = -0.058 
 Observation Number = 296  Intercept DFBETAS = 0.0106 
 Observation Number = 295  Intercept DFBETAS = -0.101 
 Observation Number = 293  Intercept DFBETAS = 0.0183 
 Observation Number = 291  Intercept DFBETAS = -0.04 
 Observation Number = 290  Intercept DFBETAS = 0.0071 
 Observation Number = 289  Intercept DFBETAS = 0.0571 
 Observation Number = 288  Intercept DFBETAS = .00015 
 Observation Number = 287  Intercept DFBETAS = 0.0234 
 Observation Number = 286  Intercept DFBETAS = 0.0896 
 Observation Number = 285  Intercept DFBETAS = 0.0372 
 Observation Number = 284  Intercept DFBETAS = 0.0263 
 Observation Number = 283  Intercept DFBETAS = -0.031 
 Observation Number = 282  Intercept DFBETAS = 0.0197 
 Observation Number = 281  Intercept DFBETAS = 0.0392 
 Observation Number = 280  Intercept DFBETAS = .00044 
 Observation Number = 279  Intercept DFBETAS = -0.06 
 Observation Number = 278  Intercept DFBETAS = -0.002 
 Observation Number = 277  Intercept DFBETAS = .00064 
 Observation Number = 276  Intercept DFBETAS = -0.024 
 Observation Number = 275  Intercept DFBETAS = 0.0333 
 Observation Number = 274  Intercept DFBETAS = -0.103 
 Observation Number = 273  Intercept DFBETAS = -0.021 
 Observation Number = 272  Intercept DFBETAS = -0.002 
 Observation Number = 271  Intercept DFBETAS = .00048 
 Observation Number = 270  Intercept DFBETAS = -0.019 
 Observation Number = 269  Intercept DFBETAS = 0.0226 
 Observation Number = 268  Intercept DFBETAS = 0.0867 
 Observation Number = 267  Intercept DFBETAS = -0.012 
 Observation Number = 266  Intercept DFBETAS = 0.0723 
 Observation Number = 265  Intercept DFBETAS = -0.002 
 Observation Number = 264  Intercept DFBETAS = 0.0136 
 Observation Number = 263  Intercept DFBETAS = -0.025 
 Observation Number = 262  Intercept DFBETAS = 0.0169 
 Observation Number = 261  Intercept DFBETAS = 0.0046 
 Observation Number = 260  Intercept DFBETAS = -0.005 
 Observation Number = 259  Intercept DFBETAS = -0.049 
 Observation Number = 258  Intercept DFBETAS = -0.016 
 Observation Number = 257  Intercept DFBETAS = 0.0185 
 Observation Number = 256  Intercept DFBETAS = .00026 
 Observation Number = 255  Intercept DFBETAS = 0.0799 
 Observation Number = 254  Intercept DFBETAS = -0.014 
 Observation Number = 253  Intercept DFBETAS = -0.114 
 Observation Number = 252  Intercept DFBETAS = -0.018 
 Observation Number = 251  Intercept DFBETAS = -0.037 
 Observation Number = 250  Intercept DFBETAS = 0.0111 
 Observation Number = 249  Intercept DFBETAS = 0.0024 
 Observation Number = 248  Intercept DFBETAS = 0.0096 
 Observation Number = 247  Intercept DFBETAS = 0.0329 
 Observation Number = 246  Intercept DFBETAS = -0.016 
 Observation Number = 245  Intercept DFBETAS = 0.0235 
 Observation Number = 244  Intercept DFBETAS = -0.023 
 Observation Number = 243  Intercept DFBETAS = -0.113 
 Observation Number = 242  Intercept DFBETAS = -0.059 
 Observation Number = 241  Intercept DFBETAS = -0.035 
 Observation Number = 240  Intercept DFBETAS = -0.098 
 Observation Number = 239  Intercept DFBETAS = 0.0743 
 Observation Number = 238  Intercept DFBETAS = -0.012 
 Observation Number = 237  Intercept DFBETAS = -0.019 
 Observation Number = 236  Intercept DFBETAS = 0.0164 
 Observation Number = 235  Intercept DFBETAS = 0.0052 
 Observation Number = 234  Intercept DFBETAS = 0.0266 
 Observation Number = 233  Intercept DFBETAS = 0.0175 
 Observation Number = 232  Intercept DFBETAS = 0.0608 
 Observation Number = 231  Intercept DFBETAS = -0.071 
 Observation Number = 230  Intercept DFBETAS = 0.0153 
 Observation Number = 229  Intercept DFBETAS = -0.017 
 Observation Number = 228  Intercept DFBETAS = 0.083 
 Observation Number = 227  Intercept DFBETAS = -0.102 
 Observation Number = 226  Intercept DFBETAS = 0.0123 
 Observation Number = 225  Intercept DFBETAS = 0.0271 
 Observation Number = 224  Intercept DFBETAS = -52E-5 
 Observation Number = 223  Intercept DFBETAS = -0.007 
 Observation Number = 222  Intercept DFBETAS = 0.0207 
 Observation Number = 221  Intercept DFBETAS = 0.06 
 Observation Number = 220  Intercept DFBETAS = -0.039 
 Observation Number = 219  Intercept DFBETAS = -0.041 
 Observation Number = 217  Intercept DFBETAS = -0.014 
 Observation Number = 216  Intercept DFBETAS = -0.011 
 Observation Number = 215  Intercept DFBETAS = 0.0376 
 Observation Number = 214  Intercept DFBETAS = -0.006 
 Observation Number = 212  Intercept DFBETAS = -0.036 
 Observation Number = 211  Intercept DFBETAS = -0.061 
 Observation Number = 210  Intercept DFBETAS = -0.007 
 Observation Number = 209  Intercept DFBETAS = -0.014 
 Observation Number = 208  Intercept DFBETAS = -0.015 
 Observation Number = 207  Intercept DFBETAS = 0.0617 
 Observation Number = 206  Intercept DFBETAS = 0.0142 
 Observation Number = 205  Intercept DFBETAS = 0.0184 
 Observation Number = 204  Intercept DFBETAS = 0.0192 
 Observation Number = 203  Intercept DFBETAS = 0.0958 
 Observation Number = 202  Intercept DFBETAS = -38E-5 
 Observation Number = 201  Intercept DFBETAS = .00071 
 Observation Number = 200  Intercept DFBETAS = .00054 
 Observation Number = 199  Intercept DFBETAS = 0.0367 
 Observation Number = 198  Intercept DFBETAS = 0.0472 
 Observation Number = 197  Intercept DFBETAS = 0.0048 
 Observation Number = 196  Intercept DFBETAS = 0.0164 
 Observation Number = 195  Intercept DFBETAS = -0.016 
 Observation Number = 194  Intercept DFBETAS = 0.0017 
 Observation Number = 193  Intercept DFBETAS = -0.015 
 Observation Number = 192  Intercept DFBETAS = -0.028 
 Observation Number = 191  Intercept DFBETAS = -0.015 
 Observation Number = 190  Intercept DFBETAS = 0.0141 
 Observation Number = 189  Intercept DFBETAS = 0.0117 
 Observation Number = 188  Intercept DFBETAS = 0.0079 
 Observation Number = 187  Intercept DFBETAS = -0.007 
 Observation Number = 186  Intercept DFBETAS = 0.0302 
 Observation Number = 185  Intercept DFBETAS = -0.114 
 Observation Number = 184  Intercept DFBETAS = 0.0023 
 Observation Number = 183  Intercept DFBETAS = -0.051 
 Observation Number = 182  Intercept DFBETAS = -0.003 
 Observation Number = 181  Intercept DFBETAS = 0.0066 
 Observation Number = 180  Intercept DFBETAS = 0.0075 
 Observation Number = 179  Intercept DFBETAS = 0.0122 
 Observation Number = 178  Intercept DFBETAS = -0.022 
 Observation Number = 177  Intercept DFBETAS = -0.004 
 Observation Number = 176  Intercept DFBETAS = 0.0477 
 Observation Number = 175  Intercept DFBETAS = 0.0118 
 Observation Number = 174  Intercept DFBETAS = 0.017 
 Observation Number = 172  Intercept DFBETAS = -0.017 
 Observation Number = 171  Intercept DFBETAS = 0.0011 
 Observation Number = 170  Intercept DFBETAS = 0.0352 
 Observation Number = 169  Intercept DFBETAS = -0.035 
 Observation Number = 168  Intercept DFBETAS = -0.038 
 Observation Number = 167  Intercept DFBETAS = -0.072 
 Observation Number = 165  Intercept DFBETAS = -0.01 
 Observation Number = 164  Intercept DFBETAS = -0.031 
 Observation Number = 163  Intercept DFBETAS = 0.0324 
 Observation Number = 162  Intercept DFBETAS = -0.028 
 Observation Number = 161  Intercept DFBETAS = -0.037 
 Observation Number = 160  Intercept DFBETAS = 0.0085 
 Observation Number = 159  Intercept DFBETAS = -0.017 
 Observation Number = 158  Intercept DFBETAS = 0.0131 
 Observation Number = 157  Intercept DFBETAS = 0.0415 
 Observation Number = 156  Intercept DFBETAS = -0.008 
 Observation Number = 155  Intercept DFBETAS = -0.077 
 Observation Number = 154  Intercept DFBETAS = -0.011 
 Observation Number = 153  Intercept DFBETAS = -0.027 
 Observation Number = 152  Intercept DFBETAS = -0.087 
 Observation Number = 151  Intercept DFBETAS = -0.001 
 Observation Number = 150  Intercept DFBETAS = -0.024 
 Observation Number = 149  Intercept DFBETAS = -0.083 
 Observation Number = 148  Intercept DFBETAS = 0.0609 
 Observation Number = 147  Intercept DFBETAS = 0.0345 
 Observation Number = 146  Intercept DFBETAS = -0.013 
 Observation Number = 145  Intercept DFBETAS = -0.028 
 Observation Number = 144  Intercept DFBETAS = 0.0173 
 Observation Number = 143  Intercept DFBETAS = -0.019 
 Observation Number = 142  Intercept DFBETAS = -0.003 
 Observation Number = 141  Intercept DFBETAS = -0.013 
 Observation Number = 140  Intercept DFBETAS = -11E-5 
 Observation Number = 139  Intercept DFBETAS = -0.004 
 Observation Number = 138  Intercept DFBETAS = -0.018 
 Observation Number = 137  Intercept DFBETAS = 0.0013 
 Observation Number = 136  Intercept DFBETAS = -0.003 
 Observation Number = 135  Intercept DFBETAS = 0.0168 
 Observation Number = 134  Intercept DFBETAS = 0.0078 
 Observation Number = 133  Intercept DFBETAS = -0.011 
 Observation Number = 132  Intercept DFBETAS = -8E-5 
 Observation Number = 131  Intercept DFBETAS = -0.074 
 Observation Number = 130  Intercept DFBETAS = -0.004 
 Observation Number = 129  Intercept DFBETAS = -58E-5 
 Observation Number = 128  Intercept DFBETAS = 0.004 
 Observation Number = 127  Intercept DFBETAS = -0.012 
 Observation Number = 126  Intercept DFBETAS = .00016 
 Observation Number = 125  Intercept DFBETAS = 0.023 
 Observation Number = 124  Intercept DFBETAS = -0.059 
 Observation Number = 123  Intercept DFBETAS = 0.0204 
 Observation Number = 122  Intercept DFBETAS = -0.002 
 Observation Number = 121  Intercept DFBETAS = -95E-5 
 Observation Number = 120  Intercept DFBETAS = -0.036 
 Observation Number = 119  Intercept DFBETAS = 0.013 
 Observation Number = 118  Intercept DFBETAS = 0.0015 
 Observation Number = 117  Intercept DFBETAS = 0.0062 
 Observation Number = 116  Intercept DFBETAS = -0.105 
 Observation Number = 115  Intercept DFBETAS = -0.048 
 Observation Number = 114  Intercept DFBETAS = -0.012 
 Observation Number = 113  Intercept DFBETAS = -0.003 
 Observation Number = 112  Intercept DFBETAS = 0.0329 
 Observation Number = 111  Intercept DFBETAS = -0.046 
 Observation Number = 110  Intercept DFBETAS = 0.0409 
 Observation Number = 109  Intercept DFBETAS = 0.0458 
 Observation Number = 108  Intercept DFBETAS = -0.031 
 Observation Number = 107  Intercept DFBETAS = 0.0424 
 Observation Number = 106  Intercept DFBETAS = 0.003 
 Observation Number = 105  Intercept DFBETAS = 0.0054 
 Observation Number = 104  Intercept DFBETAS = -0.085 
 Observation Number = 103  Intercept DFBETAS = -0.055 
 Observation Number = 102  Intercept DFBETAS = 0.0382 
 Observation Number = 100  Intercept DFBETAS = 0.0085 
 Observation Number = 99  Intercept DFBETAS = 0.0496 
 Observation Number = 98  Intercept DFBETAS = -0.046 
 Observation Number = 97  Intercept DFBETAS = 0.0049 
 Observation Number = 96  Intercept DFBETAS = 0.0606 
 Observation Number = 95  Intercept DFBETAS = -0.004 
 Observation Number = 94  Intercept DFBETAS = 0.0055 
 Observation Number = 93  Intercept DFBETAS = -0.006 
 Observation Number = 92  Intercept DFBETAS = 0.04 
 Observation Number = 91  Intercept DFBETAS = 0.0117 
 Observation Number = 90  Intercept DFBETAS = 0.017 
 Observation Number = 89  Intercept DFBETAS = -0.022 
 Observation Number = 88  Intercept DFBETAS = -0.006 
 Observation Number = 87  Intercept DFBETAS = -0.007 
 Observation Number = 86  Intercept DFBETAS = 0.0552 
 Observation Number = 85  Intercept DFBETAS = 0.0818 
 Observation Number = 84  Intercept DFBETAS = -0.095 
 Observation Number = 83  Intercept DFBETAS = 0.0022 
 Observation Number = 82  Intercept DFBETAS = -0.038 
 Observation Number = 81  Intercept DFBETAS = -0.03 
 Observation Number = 80  Intercept DFBETAS = 0.029 
 Observation Number = 79  Intercept DFBETAS = 0.0111 
 Observation Number = 78  Intercept DFBETAS = -0.106 
 Observation Number = 76  Intercept DFBETAS = 0.0104 
 Observation Number = 75  Intercept DFBETAS = 0.0021 
 Observation Number = 74  Intercept DFBETAS = 0.0221 
 Observation Number = 73  Intercept DFBETAS = 0.0535 
 Observation Number = 72  Intercept DFBETAS = -0.002 
 Observation Number = 71  Intercept DFBETAS = -0.043 
 Observation Number = 70  Intercept DFBETAS = -0.044 
 Observation Number = 69  Intercept DFBETAS = .00066 
 Observation Number = 68  Intercept DFBETAS = 0.051 
 Observation Number = 67  Intercept DFBETAS = -0.004 
 Observation Number = 66  Intercept DFBETAS = 0.0795 
 Observation Number = 65  Intercept DFBETAS = 0.0151 
 Observation Number = 64  Intercept DFBETAS = 0.0563 
 Observation Number = 63  Intercept DFBETAS = -0.007 
 Observation Number = 62  Intercept DFBETAS = -0.006 
 Observation Number = 61  Intercept DFBETAS = 0.0326 
 Observation Number = 60  Intercept DFBETAS = 0.0149 
 Observation Number = 59  Intercept DFBETAS = 0.0291 
 Observation Number = 58  Intercept DFBETAS = 0.0216 
 Observation Number = 57  Intercept DFBETAS = -0.014 
 Observation Number = 56  Intercept DFBETAS = -0.021 
 Observation Number = 55  Intercept DFBETAS = -0.048 
 Observation Number = 54  Intercept DFBETAS = 0.0087 
 Observation Number = 53  Intercept DFBETAS = 0.0196 
 Observation Number = 52  Intercept DFBETAS = 0.0087 
 Observation Number = 51  Intercept DFBETAS = .00031 
 Observation Number = 50  Intercept DFBETAS = 0.0071 
 Observation Number = 49  Intercept DFBETAS = 0.037 
 Observation Number = 48  Intercept DFBETAS = -0.07 
 Observation Number = 47  Intercept DFBETAS = 0.0121 
 Observation Number = 46  Intercept DFBETAS = 0.0161 
 Observation Number = 45  Intercept DFBETAS = 0.0012 
 Observation Number = 44  Intercept DFBETAS = -0.01 
 Observation Number = 43  Intercept DFBETAS = -53E-5 
 Observation Number = 42  Intercept DFBETAS = -0.006 
 Observation Number = 41  Intercept DFBETAS = 0.0013 
 Observation Number = 40  Intercept DFBETAS = 0.1078 
 Observation Number = 39  Intercept DFBETAS = 0.0147 
 Observation Number = 38  Intercept DFBETAS = -0.055 
 Observation Number = 37  Intercept DFBETAS = 0.0612 
 Observation Number = 36  Intercept DFBETAS = -0.021 
 Observation Number = 35  Intercept DFBETAS = 0.0245 
 Observation Number = 34  Intercept DFBETAS = -0.024 
 Observation Number = 32  Intercept DFBETAS = -0.007 
 Observation Number = 31  Intercept DFBETAS = 0.007 
 Observation Number = 30  Intercept DFBETAS = 0.0264 
 Observation Number = 29  Intercept DFBETAS = 0.0088 
 Observation Number = 28  Intercept DFBETAS = 0.0135 
 Observation Number = 26  Intercept DFBETAS = 0.0466 
 Observation Number = 25  Intercept DFBETAS = -0.014 
 Observation Number = 24  Intercept DFBETAS = 0.0445 
 Observation Number = 23  Intercept DFBETAS = -0.05 
 Observation Number = 22  Intercept DFBETAS = .00036 
 Observation Number = 20  Intercept DFBETAS = 0.0024 
 Observation Number = 19  Intercept DFBETAS = -0.049 
 Observation Number = 18  Intercept DFBETAS = 0.0185 
 Observation Number = 17  Intercept DFBETAS = 0.0042 
 Observation Number = 16  Intercept DFBETAS = -0.004 
 Observation Number = 15  Intercept DFBETAS = 0.0059 
 Observation Number = 14  Intercept DFBETAS = 0.0273 
 Observation Number = 13  Intercept DFBETAS = 0.0195 
 Observation Number = 12  Intercept DFBETAS = -46E-5 
 Observation Number = 11  Intercept DFBETAS = 0.0019 
 Observation Number = 10  Intercept DFBETAS = -0.042 
 Observation Number = 9  Intercept DFBETAS = -0.014 
 Observation Number = 8  Intercept DFBETAS = 0.0478 
 Observation Number = 7  Intercept DFBETAS = -0.007 
 Observation Number = 6  Intercept DFBETAS = 0.0206 
 Observation Number = 5  Intercept DFBETAS = -0.036 
 Observation Number = 4  Intercept DFBETAS = 0.0522 
 Observation Number = 3  Intercept DFBETAS = 0.0068 
 Observation Number = 2  Intercept DFBETAS = -0.006 
 Observation Number = 1
 Y = -0.115  Y = 0.1155  Gr_Liv_Area DFBETAS = 0.1748 
 Observation Number = 294  Gr_Liv_Area DFBETAS = 0.1284 
 Observation Number = 285  Gr_Liv_Area DFBETAS = 0.218 
 Observation Number = 240  Gr_Liv_Area DFBETAS = -0.183 
 Observation Number = 218  Gr_Liv_Area DFBETAS = -0.161 
 Observation Number = 213  Gr_Liv_Area DFBETAS = 0.2131 
 Observation Number = 185  Gr_Liv_Area DFBETAS = 0.1779 
 Observation Number = 166  Gr_Liv_Area DFBETAS = -0.134 
 Observation Number = 147  Gr_Liv_Area DFBETAS = -0.117 
 Observation Number = 146  Gr_Liv_Area DFBETAS = -0.218 
 Observation Number = 126  Gr_Liv_Area DFBETAS = 0.3705 
 Observation Number = 123  Gr_Liv_Area DFBETAS = 0.2024 
 Observation Number = 114  Gr_Liv_Area DFBETAS = -0.149 
 Observation Number = 110  Gr_Liv_Area DFBETAS = 0.2175 
 Observation Number = 76  Gr_Liv_Area DFBETAS = -0.135 
 Observation Number = 58  Gr_Liv_Area DFBETAS = -0.118 
 Observation Number = 23  Gr_Liv_Area DFBETAS = -0.136 
 Observation Number = 21  Gr_Liv_Area DFBETAS = 0.1163 
 Observation Number = 7  Gr_Liv_Area DFBETAS = 0.1201 
 Observation Number = 5  Gr_Liv_Area DFBETAS = 0.1748 
 Observation Number = 294  Gr_Liv_Area DFBETAS = 0.1284 
 Observation Number = 285  Gr_Liv_Area DFBETAS = 0.218 
 Observation Number = 240  Gr_Liv_Area DFBETAS = -0.183 
 Observation Number = 218  Gr_Liv_Area DFBETAS = -0.161 
 Observation Number = 213  Gr_Liv_Area DFBETAS = 0.2131 
 Observation Number = 185  Gr_Liv_Area DFBETAS = 0.1779 
 Observation Number = 166  Gr_Liv_Area DFBETAS = -0.134 
 Observation Number = 147  Gr_Liv_Area DFBETAS = -0.117 
 Observation Number = 146  Gr_Liv_Area DFBETAS = -0.218 
 Observation Number = 126  Gr_Liv_Area DFBETAS = 0.3705 
 Observation Number = 123  Gr_Liv_Area DFBETAS = 0.2024 
 Observation Number = 114  Gr_Liv_Area DFBETAS = -0.149 
 Observation Number = 110  Gr_Liv_Area DFBETAS = 0.2175 
 Observation Number = 76  Gr_Liv_Area DFBETAS = -0.135 
 Observation Number = 58  Gr_Liv_Area DFBETAS = -0.118 
 Observation Number = 23  Gr_Liv_Area DFBETAS = -0.136 
 Observation Number = 21  Gr_Liv_Area DFBETAS = 0.1163 
 Observation Number = 7  Gr_Liv_Area DFBETAS = 0.1201 
 Observation Number = 5  Gr_Liv_Area DFBETAS = 0.0382 
 Observation Number = 300  Gr_Liv_Area DFBETAS = -0.11 
 Observation Number = 299  Gr_Liv_Area DFBETAS = -0.065 
 Observation Number = 298  Gr_Liv_Area DFBETAS = -0.03 
 Observation Number = 297  Gr_Liv_Area DFBETAS = 0.0151 
 Observation Number = 296  Gr_Liv_Area DFBETAS = -0.02 
 Observation Number = 295  Gr_Liv_Area DFBETAS = 0.0078 
 Observation Number = 293  Gr_Liv_Area DFBETAS = -0.093 
 Observation Number = 292  Gr_Liv_Area DFBETAS = -0.027 
 Observation Number = 291  Gr_Liv_Area DFBETAS = 0.0334 
 Observation Number = 290  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 289  Gr_Liv_Area DFBETAS = 0.0546 
 Observation Number = 288  Gr_Liv_Area DFBETAS = -89E-5 
 Observation Number = 287  Gr_Liv_Area DFBETAS = -0.056 
 Observation Number = 286  Gr_Liv_Area DFBETAS = 0.0409 
 Observation Number = 284  Gr_Liv_Area DFBETAS = -0.086 
 Observation Number = 283  Gr_Liv_Area DFBETAS = 0.0283 
 Observation Number = 282  Gr_Liv_Area DFBETAS = -0.035 
 Observation Number = 281  Gr_Liv_Area DFBETAS = 0.0154 
 Observation Number = 280  Gr_Liv_Area DFBETAS = -49E-5 
 Observation Number = 279  Gr_Liv_Area DFBETAS = 0.103 
 Observation Number = 278  Gr_Liv_Area DFBETAS = 0.0219 
 Observation Number = 277  Gr_Liv_Area DFBETAS = -0.053 
 Observation Number = 276  Gr_Liv_Area DFBETAS = 0.0329 
 Observation Number = 275  Gr_Liv_Area DFBETAS = -0.048 
 Observation Number = 274  Gr_Liv_Area DFBETAS = 0.0032 
 Observation Number = 273  Gr_Liv_Area DFBETAS = 0.0415 
 Observation Number = 272  Gr_Liv_Area DFBETAS = 0.0032 
 Observation Number = 271  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 270  Gr_Liv_Area DFBETAS = -0.021 
 Observation Number = 269  Gr_Liv_Area DFBETAS = 0.0218 
 Observation Number = 268  Gr_Liv_Area DFBETAS = -0.074 
 Observation Number = 267  Gr_Liv_Area DFBETAS = -0.044 
 Observation Number = 266  Gr_Liv_Area DFBETAS = -0.028 
 Observation Number = 265  Gr_Liv_Area DFBETAS = 0.0014 
 Observation Number = 264  Gr_Liv_Area DFBETAS = -82E-5 
 Observation Number = 263  Gr_Liv_Area DFBETAS = 0.0582 
 Observation Number = 262  Gr_Liv_Area DFBETAS = 0.0218 
 Observation Number = 261  Gr_Liv_Area DFBETAS = -0.009 
 Observation Number = 260  Gr_Liv_Area DFBETAS = -0.013 
 Observation Number = 259  Gr_Liv_Area DFBETAS = -0.038 
 Observation Number = 258  Gr_Liv_Area DFBETAS = -0.009 
 Observation Number = 257  Gr_Liv_Area DFBETAS = -0.032 
 Observation Number = 256  Gr_Liv_Area DFBETAS = -.0009 
 Observation Number = 255  Gr_Liv_Area DFBETAS = -0.061 
 Observation Number = 254  Gr_Liv_Area DFBETAS = 0.0219 
 Observation Number = 253  Gr_Liv_Area DFBETAS = -0.002 
 Observation Number = 252  Gr_Liv_Area DFBETAS = -0.019 
 Observation Number = 251  Gr_Liv_Area DFBETAS = 0.0168 
 Observation Number = 250  Gr_Liv_Area DFBETAS = -0.064 
 Observation Number = 249  Gr_Liv_Area DFBETAS = -0.019 
 Observation Number = 248  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 247  Gr_Liv_Area DFBETAS = -0.028 
 Observation Number = 246  Gr_Liv_Area DFBETAS = 0.0216 
 Observation Number = 245  Gr_Liv_Area DFBETAS = -0.015 
 Observation Number = 244  Gr_Liv_Area DFBETAS = 0.0046 
 Observation Number = 243  Gr_Liv_Area DFBETAS = 0.0108 
 Observation Number = 242  Gr_Liv_Area DFBETAS = -0.011 
 Observation Number = 241  Gr_Liv_Area DFBETAS = -0.048 
 Observation Number = 239  Gr_Liv_Area DFBETAS = -0.051 
 Observation Number = 238  Gr_Liv_Area DFBETAS = -0.021 
 Observation Number = 237  Gr_Liv_Area DFBETAS = 0.0672 
 Observation Number = 236  Gr_Liv_Area DFBETAS = -0.01 
 Observation Number = 235  Gr_Liv_Area DFBETAS = -59E-5 
 Observation Number = 234  Gr_Liv_Area DFBETAS = 0.1086 
 Observation Number = 233  Gr_Liv_Area DFBETAS = -0.008 
 Observation Number = 232  Gr_Liv_Area DFBETAS = -0.108 
 Observation Number = 231  Gr_Liv_Area DFBETAS = 0.1049 
 Observation Number = 230  Gr_Liv_Area DFBETAS = -0.021 
 Observation Number = 229  Gr_Liv_Area DFBETAS = 0.0625 
 Observation Number = 228  Gr_Liv_Area DFBETAS = -0.047 
 Observation Number = 227  Gr_Liv_Area DFBETAS = 0.0208 
 Observation Number = 226  Gr_Liv_Area DFBETAS = -0.082 
 Observation Number = 225  Gr_Liv_Area DFBETAS = -0.057 
 Observation Number = 224  Gr_Liv_Area DFBETAS = -0.004 
 Observation Number = 223  Gr_Liv_Area DFBETAS = 0.0048 
 Observation Number = 222  Gr_Liv_Area DFBETAS = -0.016 
 Observation Number = 221  Gr_Liv_Area DFBETAS = -0.039 
 Observation Number = 220  Gr_Liv_Area DFBETAS = 0.0177 
 Observation Number = 219  Gr_Liv_Area DFBETAS = 0.0562 
 Observation Number = 217  Gr_Liv_Area DFBETAS = -0.108 
 Observation Number = 216  Gr_Liv_Area DFBETAS = 0.0253 
 Observation Number = 215  Gr_Liv_Area DFBETAS = -0.046 
 Observation Number = 214  Gr_Liv_Area DFBETAS = 0.0013 
 Observation Number = 212  Gr_Liv_Area DFBETAS = -2E-6 
 Observation Number = 211  Gr_Liv_Area DFBETAS = 0.0524 
 Observation Number = 210  Gr_Liv_Area DFBETAS = 0.0048 
 Observation Number = 209  Gr_Liv_Area DFBETAS = 0.0067 
 Observation Number = 208  Gr_Liv_Area DFBETAS = 0.0445 
 Observation Number = 207  Gr_Liv_Area DFBETAS = -0.096 
 Observation Number = 206  Gr_Liv_Area DFBETAS = .00024 
 Observation Number = 205  Gr_Liv_Area DFBETAS = -0.027 
 Observation Number = 204  Gr_Liv_Area DFBETAS = 0.0282 
 Observation Number = 203  Gr_Liv_Area DFBETAS = -0.023 
 Observation Number = 202  Gr_Liv_Area DFBETAS = -0.004 
 Observation Number = 201  Gr_Liv_Area DFBETAS = 0.0114 
 Observation Number = 200  Gr_Liv_Area DFBETAS = -26E-5 
 Observation Number = 199  Gr_Liv_Area DFBETAS = -0.027 
 Observation Number = 198  Gr_Liv_Area DFBETAS = -0.022 
 Observation Number = 197  Gr_Liv_Area DFBETAS = -0.014 
 Observation Number = 196  Gr_Liv_Area DFBETAS = -0.028 
 Observation Number = 195  Gr_Liv_Area DFBETAS = 0.0115 
 Observation Number = 194  Gr_Liv_Area DFBETAS = -0.008 
 Observation Number = 193  Gr_Liv_Area DFBETAS = 0.0086 
 Observation Number = 192  Gr_Liv_Area DFBETAS = 0.0138 
 Observation Number = 191  Gr_Liv_Area DFBETAS = 0.0078 
 Observation Number = 190  Gr_Liv_Area DFBETAS = -0.01 
 Observation Number = 189  Gr_Liv_Area DFBETAS = 0.0011 
 Observation Number = 188  Gr_Liv_Area DFBETAS = 0.004 
 Observation Number = 187  Gr_Liv_Area DFBETAS = 0.0289 
 Observation Number = 186  Gr_Liv_Area DFBETAS = 0.0528 
 Observation Number = 184  Gr_Liv_Area DFBETAS = 0.0295 
 Observation Number = 183  Gr_Liv_Area DFBETAS = 0.0342 
 Observation Number = 182  Gr_Liv_Area DFBETAS = 0.0018 
 Observation Number = 181  Gr_Liv_Area DFBETAS = 0.0127 
 Observation Number = 180  Gr_Liv_Area DFBETAS = 0.0339 
 Observation Number = 179  Gr_Liv_Area DFBETAS = 0.0454 
 Observation Number = 178  Gr_Liv_Area DFBETAS = 0.0058 
 Observation Number = 177  Gr_Liv_Area DFBETAS = 0.0131 
 Observation Number = 176  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 175  Gr_Liv_Area DFBETAS = 0.0651 
 Observation Number = 174  Gr_Liv_Area DFBETAS = -0.075 
 Observation Number = 173  Gr_Liv_Area DFBETAS = 0.0177 
 Observation Number = 172  Gr_Liv_Area DFBETAS = -0.01 
 Observation Number = 171  Gr_Liv_Area DFBETAS = .00088 
 Observation Number = 170  Gr_Liv_Area DFBETAS = -0.031 
 Observation Number = 169  Gr_Liv_Area DFBETAS = 0.0556 
 Observation Number = 168  Gr_Liv_Area DFBETAS = 0.0745 
 Observation Number = 167  Gr_Liv_Area DFBETAS = 0.0392 
 Observation Number = 165  Gr_Liv_Area DFBETAS = 0.0129 
 Observation Number = 164  Gr_Liv_Area DFBETAS = 0.0158 
 Observation Number = 163  Gr_Liv_Area DFBETAS = 0.0297 
 Observation Number = 162  Gr_Liv_Area DFBETAS = 0.0059 
 Observation Number = 161  Gr_Liv_Area DFBETAS = 0.0521 
 Observation Number = 160  Gr_Liv_Area DFBETAS = -0.019 
 Observation Number = 159  Gr_Liv_Area DFBETAS = -0.073 
 Observation Number = 158  Gr_Liv_Area DFBETAS = 0.0048 
 Observation Number = 157  Gr_Liv_Area DFBETAS = -0.044 
 Observation Number = 156  Gr_Liv_Area DFBETAS = .00038 
 Observation Number = 155  Gr_Liv_Area DFBETAS = 0.0147 
 Observation Number = 154  Gr_Liv_Area DFBETAS = -0.037 
 Observation Number = 153  Gr_Liv_Area DFBETAS = 0.1027 
 Observation Number = 152  Gr_Liv_Area DFBETAS = 0.098 
 Observation Number = 151  Gr_Liv_Area DFBETAS = 0.0136 
 Observation Number = 150  Gr_Liv_Area DFBETAS = 0.0305 
 Observation Number = 149  Gr_Liv_Area DFBETAS = 0.0907 
 Observation Number = 148  Gr_Liv_Area DFBETAS = 0.011 
 Observation Number = 145  Gr_Liv_Area DFBETAS = 0.0214 
 Observation Number = 144  Gr_Liv_Area DFBETAS = 0.0052 
 Observation Number = 143  Gr_Liv_Area DFBETAS = 0.0352 
 Observation Number = 142  Gr_Liv_Area DFBETAS = -7E-5 
 Observation Number = 141  Gr_Liv_Area DFBETAS = 0.0076 
 Observation Number = 140  Gr_Liv_Area DFBETAS = .00031 
 Observation Number = 139  Gr_Liv_Area DFBETAS = -0.021 
 Observation Number = 138  Gr_Liv_Area DFBETAS = -0.01 
 Observation Number = 137  Gr_Liv_Area DFBETAS = -0.002 
 Observation Number = 136  Gr_Liv_Area DFBETAS = 0.0038 
 Observation Number = 135  Gr_Liv_Area DFBETAS = -0.01 
 Observation Number = 134  Gr_Liv_Area DFBETAS = 0.0294 
 Observation Number = 133  Gr_Liv_Area DFBETAS = 0.0166 
 Observation Number = 132  Gr_Liv_Area DFBETAS = 9.4E-7 
 Observation Number = 131  Gr_Liv_Area DFBETAS = 0.0248 
 Observation Number = 130  Gr_Liv_Area DFBETAS = 0.0019 
 Observation Number = 129  Gr_Liv_Area DFBETAS = 0.0224 
 Observation Number = 128  Gr_Liv_Area DFBETAS = -0.041 
 Observation Number = 127  Gr_Liv_Area DFBETAS = -97E-5 
 Observation Number = 125  Gr_Liv_Area DFBETAS = 0.0326 
 Observation Number = 124  Gr_Liv_Area DFBETAS = 0.0284 
 Observation Number = 122  Gr_Liv_Area DFBETAS = -0.014 
 Observation Number = 121  Gr_Liv_Area DFBETAS = 0.0004 
 Observation Number = 120  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 119  Gr_Liv_Area DFBETAS = -0.001 
 Observation Number = 118  Gr_Liv_Area DFBETAS = 0.0212 
 Observation Number = 117  Gr_Liv_Area DFBETAS = 0.0398 
 Observation Number = 116  Gr_Liv_Area DFBETAS = -0.019 
 Observation Number = 115  Gr_Liv_Area DFBETAS = -0.009 
 Observation Number = 113  Gr_Liv_Area DFBETAS = -0.02 
 Observation Number = 112  Gr_Liv_Area DFBETAS = -0.024 
 Observation Number = 111  Gr_Liv_Area DFBETAS = -0.031 
 Observation Number = 109  Gr_Liv_Area DFBETAS = -0.082 
 Observation Number = 108  Gr_Liv_Area DFBETAS = -0.012 
 Observation Number = 107  Gr_Liv_Area DFBETAS = 0.0876 
 Observation Number = 106  Gr_Liv_Area DFBETAS = -24E-5 
 Observation Number = 105  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 104  Gr_Liv_Area DFBETAS = 0.0163 
 Observation Number = 103  Gr_Liv_Area DFBETAS = 0.0282 
 Observation Number = 102  Gr_Liv_Area DFBETAS = 0.0357 
 Observation Number = 101  Gr_Liv_Area DFBETAS = -0.034 
 Observation Number = 100  Gr_Liv_Area DFBETAS = -0.013 
 Observation Number = 99  Gr_Liv_Area DFBETAS = -0.002 
 Observation Number = 98  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 97  Gr_Liv_Area DFBETAS = 0.0009 
 Observation Number = 96  Gr_Liv_Area DFBETAS = -0.045 
 Observation Number = 95  Gr_Liv_Area DFBETAS = -0.015 
 Observation Number = 94  Gr_Liv_Area DFBETAS = -0.001 
 Observation Number = 93  Gr_Liv_Area DFBETAS = 0.0041 
 Observation Number = 92  Gr_Liv_Area DFBETAS = -0.028 
 Observation Number = 91  Gr_Liv_Area DFBETAS = -0.007 
 Observation Number = 90  Gr_Liv_Area DFBETAS = -0.103 
 Observation Number = 89  Gr_Liv_Area DFBETAS = 0.0224 
 Observation Number = 88  Gr_Liv_Area DFBETAS = 0.0393 
 Observation Number = 87  Gr_Liv_Area DFBETAS = -0.009 
 Observation Number = 86  Gr_Liv_Area DFBETAS = -0.057 
 Observation Number = 85  Gr_Liv_Area DFBETAS = -0.088 
 Observation Number = 84  Gr_Liv_Area DFBETAS = -0.033 
 Observation Number = 83  Gr_Liv_Area DFBETAS = -0.023 
 Observation Number = 82  Gr_Liv_Area DFBETAS = 0.0315 
 Observation Number = 81  Gr_Liv_Area DFBETAS = 0.0275 
 Observation Number = 80  Gr_Liv_Area DFBETAS = -0.046 
 Observation Number = 79  Gr_Liv_Area DFBETAS = -0.003 
 Observation Number = 78  Gr_Liv_Area DFBETAS = 0.0516 
 Observation Number = 77  Gr_Liv_Area DFBETAS = -0.012 
 Observation Number = 75  Gr_Liv_Area DFBETAS = -0.009 
 Observation Number = 74  Gr_Liv_Area DFBETAS = -0.033 
 Observation Number = 73  Gr_Liv_Area DFBETAS = -0.026 
 Observation Number = 72  Gr_Liv_Area DFBETAS = -0.013 
 Observation Number = 71  Gr_Liv_Area DFBETAS = 0.0313 
 Observation Number = 70  Gr_Liv_Area DFBETAS = 0.0487 
 Observation Number = 69  Gr_Liv_Area DFBETAS = -0.101 
 Observation Number = 68  Gr_Liv_Area DFBETAS = -0.051 
 Observation Number = 67  Gr_Liv_Area DFBETAS = -0.003 
 Observation Number = 66  Gr_Liv_Area DFBETAS = -0.015 
 Observation Number = 65  Gr_Liv_Area DFBETAS = -0.017 
 Observation Number = 64  Gr_Liv_Area DFBETAS = -0.033 
 Observation Number = 63  Gr_Liv_Area DFBETAS = 0.0059 
 Observation Number = 62  Gr_Liv_Area DFBETAS = -0.008 
 Observation Number = 61  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 60  Gr_Liv_Area DFBETAS = -0.015 
 Observation Number = 59  Gr_Liv_Area DFBETAS = -0.011 
 Observation Number = 57  Gr_Liv_Area DFBETAS = 0.0425 
 Observation Number = 56  Gr_Liv_Area DFBETAS = .00055 
 Observation Number = 55  Gr_Liv_Area DFBETAS = 0.0436 
 Observation Number = 54  Gr_Liv_Area DFBETAS = 0.0975 
 Observation Number = 53  Gr_Liv_Area DFBETAS = 0.0788 
 Observation Number = 52  Gr_Liv_Area DFBETAS = 0.0219 
 Observation Number = 51  Gr_Liv_Area DFBETAS = -0.004 
 Observation Number = 50  Gr_Liv_Area DFBETAS = 0.0531 
 Observation Number = 49  Gr_Liv_Area DFBETAS = -0.106 
 Observation Number = 48  Gr_Liv_Area DFBETAS = -0.011 
 Observation Number = 47  Gr_Liv_Area DFBETAS = -0.032 
 Observation Number = 46  Gr_Liv_Area DFBETAS = -0.075 
 Observation Number = 45  Gr_Liv_Area DFBETAS = 0.0046 
 Observation Number = 44  Gr_Liv_Area DFBETAS = 0.0097 
 Observation Number = 43  Gr_Liv_Area DFBETAS = -49E-5 
 Observation Number = 42  Gr_Liv_Area DFBETAS = 0.0761 
 Observation Number = 41  Gr_Liv_Area DFBETAS = 0.0514 
 Observation Number = 40  Gr_Liv_Area DFBETAS = 0.0138 
 Observation Number = 39  Gr_Liv_Area DFBETAS = 0.0095 
 Observation Number = 38  Gr_Liv_Area DFBETAS = 0.032 
 Observation Number = 37  Gr_Liv_Area DFBETAS = -0.05 
 Observation Number = 36  Gr_Liv_Area DFBETAS = -0.022 
 Observation Number = 35  Gr_Liv_Area DFBETAS = -0.058 
 Observation Number = 34  Gr_Liv_Area DFBETAS = -0.087 
 Observation Number = 33  Gr_Liv_Area DFBETAS = 0.0198 
 Observation Number = 32  Gr_Liv_Area DFBETAS = 0.0016 
 Observation Number = 31  Gr_Liv_Area DFBETAS = -0.001 
 Observation Number = 30  Gr_Liv_Area DFBETAS = -0.02 
 Observation Number = 29  Gr_Liv_Area DFBETAS = -0.059 
 Observation Number = 28  Gr_Liv_Area DFBETAS = -0.002 
 Observation Number = 27  Gr_Liv_Area DFBETAS = -0.014 
 Observation Number = 26  Gr_Liv_Area DFBETAS = -0.022 
 Observation Number = 25  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 24  Gr_Liv_Area DFBETAS = 0.0538 
 Observation Number = 22  Gr_Liv_Area DFBETAS = 0.0015 
 Observation Number = 20  Gr_Liv_Area DFBETAS = -0.003 
 Observation Number = 19  Gr_Liv_Area DFBETAS = 0.0464 
 Observation Number = 18  Gr_Liv_Area DFBETAS = -0.006 
 Observation Number = 17  Gr_Liv_Area DFBETAS = -0.073 
 Observation Number = 16  Gr_Liv_Area DFBETAS = -0.001 
 Observation Number = 15  Gr_Liv_Area DFBETAS = 0.0111 
 Observation Number = 14  Gr_Liv_Area DFBETAS = 0.0146 
 Observation Number = 13  Gr_Liv_Area DFBETAS = -0.072 
 Observation Number = 12  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 11  Gr_Liv_Area DFBETAS = -0.001 
 Observation Number = 10  Gr_Liv_Area DFBETAS = -0.07 
 Observation Number = 9  Gr_Liv_Area DFBETAS = -0.005 
 Observation Number = 8  Gr_Liv_Area DFBETAS = 0.0067 
 Observation Number = 6  Gr_Liv_Area DFBETAS = .00052 
 Observation Number = 4  Gr_Liv_Area DFBETAS = -0.044 
 Observation Number = 3  Gr_Liv_Area DFBETAS = 0.0213 
 Observation Number = 2  Gr_Liv_Area DFBETAS = 0.1078 
 Observation Number = 1
 Y = -0.115  Y = 0.1155  Basement_Area DFBETAS = -0.307 
 Observation Number = 285  Basement_Area DFBETAS = -0.346 
 Observation Number = 233  Basement_Area DFBETAS = -0.182 
 Observation Number = 227  Basement_Area DFBETAS = 0.1584 
 Observation Number = 218  Basement_Area DFBETAS = 0.1394 
 Observation Number = 213  Basement_Area DFBETAS = 0.141 
 Observation Number = 166  Basement_Area DFBETAS = 0.2422 
 Observation Number = 151  Basement_Area DFBETAS = 0.3321 
 Observation Number = 123  Basement_Area DFBETAS = 0.1724 
 Observation Number = 97  Basement_Area DFBETAS = -0.135 
 Observation Number = 85  Basement_Area DFBETAS = 0.1255 
 Observation Number = 77  Basement_Area DFBETAS = 0.3012 
 Observation Number = 68  Basement_Area DFBETAS = -0.14 
 Observation Number = 58  Basement_Area DFBETAS = -0.131 
 Observation Number = 53  Basement_Area DFBETAS = -0.132 
 Observation Number = 52  Basement_Area DFBETAS = -0.135 
 Observation Number = 33  Basement_Area DFBETAS = -0.13 
 Observation Number = 27  Basement_Area DFBETAS = 0.1241 
 Observation Number = 22  Basement_Area DFBETAS = -0.147 
 Observation Number = 21  Basement_Area DFBETAS = -0.212 
 Observation Number = 5  Basement_Area DFBETAS = 0.1174 
 Observation Number = 1  Basement_Area DFBETAS = -0.307 
 Observation Number = 285  Basement_Area DFBETAS = -0.346 
 Observation Number = 233  Basement_Area DFBETAS = -0.182 
 Observation Number = 227  Basement_Area DFBETAS = 0.1584 
 Observation Number = 218  Basement_Area DFBETAS = 0.1394 
 Observation Number = 213  Basement_Area DFBETAS = 0.141 
 Observation Number = 166  Basement_Area DFBETAS = 0.2422 
 Observation Number = 151  Basement_Area DFBETAS = 0.3321 
 Observation Number = 123  Basement_Area DFBETAS = 0.1724 
 Observation Number = 97  Basement_Area DFBETAS = -0.135 
 Observation Number = 85  Basement_Area DFBETAS = 0.1255 
 Observation Number = 77  Basement_Area DFBETAS = 0.3012 
 Observation Number = 68  Basement_Area DFBETAS = -0.14 
 Observation Number = 58  Basement_Area DFBETAS = -0.131 
 Observation Number = 53  Basement_Area DFBETAS = -0.132 
 Observation Number = 52  Basement_Area DFBETAS = -0.135 
 Observation Number = 33  Basement_Area DFBETAS = -0.13 
 Observation Number = 27  Basement_Area DFBETAS = 0.1241 
 Observation Number = 22  Basement_Area DFBETAS = -0.147 
 Observation Number = 21  Basement_Area DFBETAS = -0.212 
 Observation Number = 5  Basement_Area DFBETAS = 0.1174 
 Observation Number = 1  Basement_Area DFBETAS = 0.0064 
 Observation Number = 300  Basement_Area DFBETAS = -0.061 
 Observation Number = 299  Basement_Area DFBETAS = 0.0651 
 Observation Number = 298  Basement_Area DFBETAS = -0.002 
 Observation Number = 297  Basement_Area DFBETAS = 0.0074 
 Observation Number = 296  Basement_Area DFBETAS = -0.007 
 Observation Number = 295  Basement_Area DFBETAS = -0.046 
 Observation Number = 294  Basement_Area DFBETAS = -0.011 
 Observation Number = 293  Basement_Area DFBETAS = -0.098 
 Observation Number = 292  Basement_Area DFBETAS = 0.0069 
 Observation Number = 291  Basement_Area DFBETAS = 0.0365 
 Observation Number = 290  Basement_Area DFBETAS = -0.009 
 Observation Number = 289  Basement_Area DFBETAS = -0.021 
 Observation Number = 288  Basement_Area DFBETAS = -34E-5 
 Observation Number = 287  Basement_Area DFBETAS = 0.0361 
 Observation Number = 286  Basement_Area DFBETAS = -0.076 
 Observation Number = 284  Basement_Area DFBETAS = 0.0032 
 Observation Number = 283  Basement_Area DFBETAS = -0.029 
 Observation Number = 282  Basement_Area DFBETAS = -81E-5 
 Observation Number = 281  Basement_Area DFBETAS = -0.003 
 Observation Number = 280  Basement_Area DFBETAS = 3.4E-5 
 Observation Number = 279  Basement_Area DFBETAS = -0.096 
 Observation Number = 278  Basement_Area DFBETAS = -0.049 
 Observation Number = 277  Basement_Area DFBETAS = 0.0257 
 Observation Number = 276  Basement_Area DFBETAS = 0.0172 
 Observation Number = 275  Basement_Area DFBETAS = 0.0351 
 Observation Number = 274  Basement_Area DFBETAS = -0.024 
 Observation Number = 273  Basement_Area DFBETAS = -0.013 
 Observation Number = 272  Basement_Area DFBETAS = -0.008 
 Observation Number = 271  Basement_Area DFBETAS = 0.0121 
 Observation Number = 270  Basement_Area DFBETAS = 0.0689 
 Observation Number = 269  Basement_Area DFBETAS = -0.078 
 Observation Number = 268  Basement_Area DFBETAS = 0.0417 
 Observation Number = 267  Basement_Area DFBETAS = 0.0151 
 Observation Number = 266  Basement_Area DFBETAS = 0.0261 
 Observation Number = 265  Basement_Area DFBETAS = -0.004 
 Observation Number = 264  Basement_Area DFBETAS = 0.024 
 Observation Number = 263  Basement_Area DFBETAS = -0.016 
 Observation Number = 262  Basement_Area DFBETAS = -0.036 
 Observation Number = 261  Basement_Area DFBETAS = -0.007 
 Observation Number = 260  Basement_Area DFBETAS = -0.011 
 Observation Number = 259  Basement_Area DFBETAS = 0.0604 
 Observation Number = 258  Basement_Area DFBETAS = -0.007 
 Observation Number = 257  Basement_Area DFBETAS = 0.0083 
 Observation Number = 256  Basement_Area DFBETAS = -46E-5 
 Observation Number = 255  Basement_Area DFBETAS = 0.047 
 Observation Number = 254  Basement_Area DFBETAS = -0.002 
 Observation Number = 253  Basement_Area DFBETAS = 0.0424 
 Observation Number = 252  Basement_Area DFBETAS = 0.0154 
 Observation Number = 251  Basement_Area DFBETAS = 0.0537 
 Observation Number = 250  Basement_Area DFBETAS = -0.051 
 Observation Number = 249  Basement_Area DFBETAS = 0.0061 
 Observation Number = 248  Basement_Area DFBETAS = -0.004 
 Observation Number = 247  Basement_Area DFBETAS = 0.0187 
 Observation Number = 246  Basement_Area DFBETAS = 0.0024 
 Observation Number = 245  Basement_Area DFBETAS = 0.0042 
 Observation Number = 244  Basement_Area DFBETAS = 0.0077 
 Observation Number = 243  Basement_Area DFBETAS = 0.091 
 Observation Number = 242  Basement_Area DFBETAS = 0.0249 
 Observation Number = 241  Basement_Area DFBETAS = -0.002 
 Observation Number = 240  Basement_Area DFBETAS = -0.015 
 Observation Number = 239  Basement_Area DFBETAS = -0.085 
 Observation Number = 238  Basement_Area DFBETAS = -0.012 
 Observation Number = 237  Basement_Area DFBETAS = -0.022 
 Observation Number = 236  Basement_Area DFBETAS = 0.0201 
 Observation Number = 235  Basement_Area DFBETAS = -0.005 
 Observation Number = 234  Basement_Area DFBETAS = 0.0396 
 Observation Number = 232  Basement_Area DFBETAS = 0.0123 
 Observation Number = 231  Basement_Area DFBETAS = -0.056 
 Observation Number = 230  Basement_Area DFBETAS = 0.0151 
 Observation Number = 229  Basement_Area DFBETAS = -0.001 
 Observation Number = 228  Basement_Area DFBETAS = -71E-5 
 Observation Number = 226  Basement_Area DFBETAS = 0.0195 
 Observation Number = 225  Basement_Area DFBETAS = 0.0171 
 Observation Number = 224  Basement_Area DFBETAS = -0.009 
 Observation Number = 223  Basement_Area DFBETAS = 0.0055 
 Observation Number = 222  Basement_Area DFBETAS = 0.0332 
 Observation Number = 221  Basement_Area DFBETAS = -0.013 
 Observation Number = 220  Basement_Area DFBETAS = 0.1144 
 Observation Number = 219  Basement_Area DFBETAS = 0.0123 
 Observation Number = 217  Basement_Area DFBETAS = 0.0149 
 Observation Number = 216  Basement_Area DFBETAS = -0.023 
 Observation Number = 215  Basement_Area DFBETAS = 0.0266 
 Observation Number = 214  Basement_Area DFBETAS = -0.005 
 Observation Number = 212  Basement_Area DFBETAS = -0.02 
 Observation Number = 211  Basement_Area DFBETAS = -0.017 
 Observation Number = 210  Basement_Area DFBETAS = -0.03 
 Observation Number = 209  Basement_Area DFBETAS = -0.002 
 Observation Number = 208  Basement_Area DFBETAS = -0.025 
 Observation Number = 207  Basement_Area DFBETAS = 0.0039 
 Observation Number = 206  Basement_Area DFBETAS = 0.0066 
 Observation Number = 205  Basement_Area DFBETAS = 0.0063 
 Observation Number = 204  Basement_Area DFBETAS = -0.064 
 Observation Number = 203  Basement_Area DFBETAS = 0.0274 
 Observation Number = 202  Basement_Area DFBETAS = 0.0166 
 Observation Number = 201  Basement_Area DFBETAS = 0.0129 
 Observation Number = 200  Basement_Area DFBETAS = 0.0039 
 Observation Number = 199  Basement_Area DFBETAS = 0.0177 
 Observation Number = 198  Basement_Area DFBETAS = -0.099 
 Observation Number = 197  Basement_Area DFBETAS = 0.0062 
 Observation Number = 196  Basement_Area DFBETAS = 0.0141 
 Observation Number = 195  Basement_Area DFBETAS = -0.012 
 Observation Number = 194  Basement_Area DFBETAS = 0.0021 
 Observation Number = 193  Basement_Area DFBETAS = -0.01 
 Observation Number = 192  Basement_Area DFBETAS = 0.0032 
 Observation Number = 191  Basement_Area DFBETAS = 0.0047 
 Observation Number = 190  Basement_Area DFBETAS = 0.0193 
 Observation Number = 189  Basement_Area DFBETAS = -0.021 
 Observation Number = 188  Basement_Area DFBETAS = -0.028 
 Observation Number = 187  Basement_Area DFBETAS = -0.015 
 Observation Number = 186  Basement_Area DFBETAS = 0.0377 
 Observation Number = 185  Basement_Area DFBETAS = 0.0951 
 Observation Number = 184  Basement_Area DFBETAS = -0.006 
 Observation Number = 183  Basement_Area DFBETAS = -0.008 
 Observation Number = 182  Basement_Area DFBETAS = 1.6E-5 
 Observation Number = 181  Basement_Area DFBETAS = -0.021 
 Observation Number = 180  Basement_Area DFBETAS = -0.066 
 Observation Number = 179  Basement_Area DFBETAS = 0.0333 
 Observation Number = 178  Basement_Area DFBETAS = 0.0222 
 Observation Number = 177  Basement_Area DFBETAS = 0.0032 
 Observation Number = 176  Basement_Area DFBETAS = 0.0458 
 Observation Number = 175  Basement_Area DFBETAS = -0.1 
 Observation Number = 174  Basement_Area DFBETAS = 0.1059 
 Observation Number = 173  Basement_Area DFBETAS = -63E-5 
 Observation Number = 172  Basement_Area DFBETAS = -0.018 
 Observation Number = 171  Basement_Area DFBETAS = -48E-5 
 Observation Number = 170  Basement_Area DFBETAS = 0.1128 
 Observation Number = 169  Basement_Area DFBETAS = -0.085 
 Observation Number = 168  Basement_Area DFBETAS = -0.035 
 Observation Number = 167  Basement_Area DFBETAS = -0.032 
 Observation Number = 165  Basement_Area DFBETAS = -0.007 
 Observation Number = 164  Basement_Area DFBETAS = -0.01 
 Observation Number = 163  Basement_Area DFBETAS = -0.04 
 Observation Number = 162  Basement_Area DFBETAS = -2E-5 
 Observation Number = 161  Basement_Area DFBETAS = -0.02 
 Observation Number = 160  Basement_Area DFBETAS = -0.002 
 Observation Number = 159  Basement_Area DFBETAS = 0.0125 
 Observation Number = 158  Basement_Area DFBETAS = -0.038 
 Observation Number = 157  Basement_Area DFBETAS = -0.054 
 Observation Number = 156  Basement_Area DFBETAS = .00093 
 Observation Number = 155  Basement_Area DFBETAS = -0.021 
 Observation Number = 154  Basement_Area DFBETAS = 0.0119 
 Observation Number = 153  Basement_Area DFBETAS = -19E-5 
 Observation Number = 152  Basement_Area DFBETAS = -0.009 
 Observation Number = 150  Basement_Area DFBETAS = -0.037 
 Observation Number = 149  Basement_Area DFBETAS = -0.007 
 Observation Number = 148  Basement_Area DFBETAS = 0.0547 
 Observation Number = 147  Basement_Area DFBETAS = 0.09 
 Observation Number = 146  Basement_Area DFBETAS = -0.003 
 Observation Number = 145  Basement_Area DFBETAS = -0.009 
 Observation Number = 144  Basement_Area DFBETAS = -0.017 
 Observation Number = 143  Basement_Area DFBETAS = -0.006 
 Observation Number = 142  Basement_Area DFBETAS = .00019 
 Observation Number = 141  Basement_Area DFBETAS = 0.0325 
 Observation Number = 140  Basement_Area DFBETAS = -32E-5 
 Observation Number = 139  Basement_Area DFBETAS = 0.0105 
 Observation Number = 138  Basement_Area DFBETAS = 0.0324 
 Observation Number = 137  Basement_Area DFBETAS = 0.0025 
 Observation Number = 136  Basement_Area DFBETAS = 0.0009 
 Observation Number = 135  Basement_Area DFBETAS = -0.002 
 Observation Number = 134  Basement_Area DFBETAS = -0.056 
 Observation Number = 133  Basement_Area DFBETAS = 0.003 
 Observation Number = 132  Basement_Area DFBETAS = 5.9E-5 
 Observation Number = 131  Basement_Area DFBETAS = 0.0218 
 Observation Number = 130  Basement_Area DFBETAS = 0.0044 
 Observation Number = 129  Basement_Area DFBETAS = -0.004 
 Observation Number = 128  Basement_Area DFBETAS = 0.0475 
 Observation Number = 127  Basement_Area DFBETAS = -0.02 
 Observation Number = 126  Basement_Area DFBETAS = 1.2E-5 
 Observation Number = 125  Basement_Area DFBETAS = -0.029 
 Observation Number = 124  Basement_Area DFBETAS = -0.038 
 Observation Number = 122  Basement_Area DFBETAS = -0.012 
 Observation Number = 121  Basement_Area DFBETAS = .00027 
 Observation Number = 120  Basement_Area DFBETAS = -0.011 
 Observation Number = 119  Basement_Area DFBETAS = 0.0054 
 Observation Number = 118  Basement_Area DFBETAS = -0.023 
 Observation Number = 117  Basement_Area DFBETAS = 0.0256 
 Observation Number = 116  Basement_Area DFBETAS = 0.045 
 Observation Number = 115  Basement_Area DFBETAS = 0.0357 
 Observation Number = 114  Basement_Area DFBETAS = 0.0115 
 Observation Number = 113  Basement_Area DFBETAS = -0.021 
 Observation Number = 112  Basement_Area DFBETAS = 0.005 
 Observation Number = 111  Basement_Area DFBETAS = 0.0643 
 Observation Number = 110  Basement_Area DFBETAS = -0.012 
 Observation Number = 109  Basement_Area DFBETAS = 0.0142 
 Observation Number = 108  Basement_Area DFBETAS = -0.024 
 Observation Number = 107  Basement_Area DFBETAS = 0.0666 
 Observation Number = 106  Basement_Area DFBETAS = -0.002 
 Observation Number = 105  Basement_Area DFBETAS = -0.006 
 Observation Number = 104  Basement_Area DFBETAS = 0.0816 
 Observation Number = 103  Basement_Area DFBETAS = -0.063 
 Observation Number = 102  Basement_Area DFBETAS = 0.036 
 Observation Number = 101  Basement_Area DFBETAS = -0.004 
 Observation Number = 100  Basement_Area DFBETAS = 0.0059 
 Observation Number = 99  Basement_Area DFBETAS = 0.0181 
 Observation Number = 98  Basement_Area DFBETAS = -0.004 
 Observation Number = 96  Basement_Area DFBETAS = -0.063 
 Observation Number = 95  Basement_Area DFBETAS = 0.0449 
 Observation Number = 94  Basement_Area DFBETAS = 0.0001 
 Observation Number = 93  Basement_Area DFBETAS = 0.0047 
 Observation Number = 92  Basement_Area DFBETAS = -0.018 
 Observation Number = 91  Basement_Area DFBETAS = -0.012 
 Observation Number = 90  Basement_Area DFBETAS = 0.0445 
 Observation Number = 89  Basement_Area DFBETAS = 0.052 
 Observation Number = 88  Basement_Area DFBETAS = -0.026 
 Observation Number = 87  Basement_Area DFBETAS = -0.047 
 Observation Number = 86  Basement_Area DFBETAS = 0.0375 
 Observation Number = 84  Basement_Area DFBETAS = 0.0368 
 Observation Number = 83  Basement_Area DFBETAS = 0.0697 
 Observation Number = 82  Basement_Area DFBETAS = 0.0118 
 Observation Number = 81  Basement_Area DFBETAS = -0.006 
 Observation Number = 80  Basement_Area DFBETAS = 0.0164 
 Observation Number = 79  Basement_Area DFBETAS = -0.016 
 Observation Number = 78  Basement_Area DFBETAS = -0.071 
 Observation Number = 76  Basement_Area DFBETAS = 0.0045 
 Observation Number = 75  Basement_Area DFBETAS = 0.0124 
 Observation Number = 74  Basement_Area DFBETAS = 0.0397 
 Observation Number = 73  Basement_Area DFBETAS = -0.063 
 Observation Number = 72  Basement_Area DFBETAS = 0.0038 
 Observation Number = 71  Basement_Area DFBETAS = 0.0023 
 Observation Number = 70  Basement_Area DFBETAS = -0.017 
 Observation Number = 69  Basement_Area DFBETAS = 0.0332 
 Observation Number = 67  Basement_Area DFBETAS = 0.0066 
 Observation Number = 66  Basement_Area DFBETAS = -0.068 
 Observation Number = 65  Basement_Area DFBETAS = 0.0134 
 Observation Number = 64  Basement_Area DFBETAS = -0.011 
 Observation Number = 63  Basement_Area DFBETAS = -0.008 
 Observation Number = 62  Basement_Area DFBETAS = 0.01 
 Observation Number = 61  Basement_Area DFBETAS = -0.039 
 Observation Number = 60  Basement_Area DFBETAS = 0.0466 
 Observation Number = 59  Basement_Area DFBETAS = -0.027 
 Observation Number = 57  Basement_Area DFBETAS = -0.002 
 Observation Number = 56  Basement_Area DFBETAS = -0.005 
 Observation Number = 55  Basement_Area DFBETAS = 0.0598 
 Observation Number = 54  Basement_Area DFBETAS = 0.026 
 Observation Number = 51  Basement_Area DFBETAS = 0.0038 
 Observation Number = 50  Basement_Area DFBETAS = 0.0236 
 Observation Number = 49  Basement_Area DFBETAS = 0.0397 
 Observation Number = 48  Basement_Area DFBETAS = 0.0314 
 Observation Number = 47  Basement_Area DFBETAS = 0.0057 
 Observation Number = 46  Basement_Area DFBETAS = 0.0192 
 Observation Number = 45  Basement_Area DFBETAS = -87E-5 
 Observation Number = 44  Basement_Area DFBETAS = 0.0024 
 Observation Number = 43  Basement_Area DFBETAS = .00084 
 Observation Number = 42  Basement_Area DFBETAS = -0.056 
 Observation Number = 41  Basement_Area DFBETAS = -0.081 
 Observation Number = 40  Basement_Area DFBETAS = -0.08 
 Observation Number = 39  Basement_Area DFBETAS = 0.0089 
 Observation Number = 38  Basement_Area DFBETAS = -0.022 
 Observation Number = 37  Basement_Area DFBETAS = -0.07 
 Observation Number = 36  Basement_Area DFBETAS = 0.0128 
 Observation Number = 35  Basement_Area DFBETAS = 0.0274 
 Observation Number = 34  Basement_Area DFBETAS = 0.0247 
 Observation Number = 32  Basement_Area DFBETAS = -32E-6 
 Observation Number = 31  Basement_Area DFBETAS = .00017 
 Observation Number = 30  Basement_Area DFBETAS = -0.011 
 Observation Number = 29  Basement_Area DFBETAS = 0.0369 
 Observation Number = 28  Basement_Area DFBETAS = 0.009 
 Observation Number = 26  Basement_Area DFBETAS = -0.053 
 Observation Number = 25  Basement_Area DFBETAS = -0.065 
 Observation Number = 24  Basement_Area DFBETAS = 0.0293 
 Observation Number = 23  Basement_Area DFBETAS = 0.0035 
 Observation Number = 20  Basement_Area DFBETAS = -0.001 
 Observation Number = 19  Basement_Area DFBETAS = -0.032 
 Observation Number = 18  Basement_Area DFBETAS = -0.003 
 Observation Number = 17  Basement_Area DFBETAS = 0.0081 
 Observation Number = 16  Basement_Area DFBETAS = 0.0095 
 Observation Number = 15  Basement_Area DFBETAS = 0.0085 
 Observation Number = 14  Basement_Area DFBETAS = 0.0331 
 Observation Number = 13  Basement_Area DFBETAS = -0.096 
 Observation Number = 12  Basement_Area DFBETAS = 0.0084 
 Observation Number = 11  Basement_Area DFBETAS = 0.0033 
 Observation Number = 10  Basement_Area DFBETAS = 0.0233 
 Observation Number = 9  Basement_Area DFBETAS = 0.0209 
 Observation Number = 8  Basement_Area DFBETAS = 0.1035 
 Observation Number = 7  Basement_Area DFBETAS = 0.002 
 Observation Number = 6  Basement_Area DFBETAS = -0.018 
 Observation Number = 4  Basement_Area DFBETAS = 0.0163 
 Observation Number = 3  Basement_Area DFBETAS = 0.0324 
 Observation Number = 2
 Y = -0.115  Y = 0.1155  Garage_Area DFBETAS = -0.135 
 Observation Number = 298  Garage_Area DFBETAS = 0.1239 
 Observation Number = 293  Garage_Area DFBETAS = -0.131 
 Observation Number = 265  Garage_Area DFBETAS = -0.134 
 Observation Number = 254  Garage_Area DFBETAS = -0.26 
 Observation Number = 227  Garage_Area DFBETAS = -0.126 
 Observation Number = 218  Garage_Area DFBETAS = -0.177 
 Observation Number = 213  Garage_Area DFBETAS = 0.1475 
 Observation Number = 147  Garage_Area DFBETAS = 0.1909 
 Observation Number = 126  Garage_Area DFBETAS = 0.1643 
 Observation Number = 123  Garage_Area DFBETAS = -0.12 
 Observation Number = 114  Garage_Area DFBETAS = 0.1839 
 Observation Number = 110  Garage_Area DFBETAS = 0.1247 
 Observation Number = 101  Garage_Area DFBETAS = -0.168 
 Observation Number = 76  Garage_Area DFBETAS = -0.152 
 Observation Number = 68  Garage_Area DFBETAS = 0.1872 
 Observation Number = 21  Garage_Area DFBETAS = -0.135 
 Observation Number = 298  Garage_Area DFBETAS = 0.1239 
 Observation Number = 293  Garage_Area DFBETAS = -0.131 
 Observation Number = 265  Garage_Area DFBETAS = -0.134 
 Observation Number = 254  Garage_Area DFBETAS = -0.26 
 Observation Number = 227  Garage_Area DFBETAS = -0.126 
 Observation Number = 218  Garage_Area DFBETAS = -0.177 
 Observation Number = 213  Garage_Area DFBETAS = 0.1475 
 Observation Number = 147  Garage_Area DFBETAS = 0.1909 
 Observation Number = 126  Garage_Area DFBETAS = 0.1643 
 Observation Number = 123  Garage_Area DFBETAS = -0.12 
 Observation Number = 114  Garage_Area DFBETAS = 0.1839 
 Observation Number = 110  Garage_Area DFBETAS = 0.1247 
 Observation Number = 101  Garage_Area DFBETAS = -0.168 
 Observation Number = 76  Garage_Area DFBETAS = -0.152 
 Observation Number = 68  Garage_Area DFBETAS = 0.1872 
 Observation Number = 21  Garage_Area DFBETAS = -0.02 
 Observation Number = 300  Garage_Area DFBETAS = 0.0589 
 Observation Number = 299  Garage_Area DFBETAS = -0.039 
 Observation Number = 297  Garage_Area DFBETAS = 0.0629 
 Observation Number = 296  Garage_Area DFBETAS = 0.0081 
 Observation Number = 295  Garage_Area DFBETAS = -0.014 
 Observation Number = 294  Garage_Area DFBETAS = -0.001 
 Observation Number = 292  Garage_Area DFBETAS = -0.001 
 Observation Number = 291  Garage_Area DFBETAS = 0.0133 
 Observation Number = 290  Garage_Area DFBETAS = -0.006 
 Observation Number = 289  Garage_Area DFBETAS = -0.018 
 Observation Number = 288  Garage_Area DFBETAS = -72E-5 
 Observation Number = 287  Garage_Area DFBETAS = -0.043 
 Observation Number = 286  Garage_Area DFBETAS = -0.008 
 Observation Number = 285  Garage_Area DFBETAS = 0.0382 
 Observation Number = 284  Garage_Area DFBETAS = 0.02 
 Observation Number = 283  Garage_Area DFBETAS = 0.021 
 Observation Number = 282  Garage_Area DFBETAS = 0.021 
 Observation Number = 281  Garage_Area DFBETAS = -0.079 
 Observation Number = 280  Garage_Area DFBETAS = 9.6E-5 
 Observation Number = 279  Garage_Area DFBETAS = -0.016 
 Observation Number = 278  Garage_Area DFBETAS = 0.0433 
 Observation Number = 277  Garage_Area DFBETAS = 0.0659 
 Observation Number = 276  Garage_Area DFBETAS = -0.049 
 Observation Number = 275  Garage_Area DFBETAS = 0.0075 
 Observation Number = 274  Garage_Area DFBETAS = 0.0951 
 Observation Number = 273  Garage_Area DFBETAS = -0.008 
 Observation Number = 272  Garage_Area DFBETAS = 0.0017 
 Observation Number = 271  Garage_Area DFBETAS = -0.007 
 Observation Number = 270  Garage_Area DFBETAS = -0.017 
 Observation Number = 269  Garage_Area DFBETAS = 0.0252 
 Observation Number = 268  Garage_Area DFBETAS = 0.0045 
 Observation Number = 267  Garage_Area DFBETAS = 0.0361 
 Observation Number = 266  Garage_Area DFBETAS = -0.002 
 Observation Number = 264  Garage_Area DFBETAS = -0.02 
 Observation Number = 263  Garage_Area DFBETAS = 0.0436 
 Observation Number = 262  Garage_Area DFBETAS = -0.041 
 Observation Number = 261  Garage_Area DFBETAS = -0.007 
 Observation Number = 260  Garage_Area DFBETAS = -0.002 
 Observation Number = 259  Garage_Area DFBETAS = -0.012 
 Observation Number = 258  Garage_Area DFBETAS = -0.01 
 Observation Number = 257  Garage_Area DFBETAS = -0.007 
 Observation Number = 256  Garage_Area DFBETAS = .00086 
 Observation Number = 255  Garage_Area DFBETAS = -0.014 
 Observation Number = 253  Garage_Area DFBETAS = 0.0145 
 Observation Number = 252  Garage_Area DFBETAS = 0.0143 
 Observation Number = 251  Garage_Area DFBETAS = -0.057 
 Observation Number = 250  Garage_Area DFBETAS = 0.0091 
 Observation Number = 249  Garage_Area DFBETAS = 0.013 
 Observation Number = 248  Garage_Area DFBETAS = 0.0256 
 Observation Number = 247  Garage_Area DFBETAS = -0.036 
 Observation Number = 246  Garage_Area DFBETAS = 0.0074 
 Observation Number = 245  Garage_Area DFBETAS = .00026 
 Observation Number = 244  Garage_Area DFBETAS = -0.047 
 Observation Number = 243  Garage_Area DFBETAS = 0.0011 
 Observation Number = 242  Garage_Area DFBETAS = 0.0884 
 Observation Number = 241  Garage_Area DFBETAS = -0.105 
 Observation Number = 240  Garage_Area DFBETAS = 0.002 
 Observation Number = 239  Garage_Area DFBETAS = -0.012 
 Observation Number = 238  Garage_Area DFBETAS = 0.0096 
 Observation Number = 237  Garage_Area DFBETAS = -0.035 
 Observation Number = 236  Garage_Area DFBETAS = -0.021 
 Observation Number = 235  Garage_Area DFBETAS = 0.0021 
 Observation Number = 234  Garage_Area DFBETAS = -0.009 
 Observation Number = 233  Garage_Area DFBETAS = -0.01 
 Observation Number = 232  Garage_Area DFBETAS = 0.1023 
 Observation Number = 231  Garage_Area DFBETAS = -0.034 
 Observation Number = 230  Garage_Area DFBETAS = -0.008 
 Observation Number = 229  Garage_Area DFBETAS = -0.049 
 Observation Number = 228  Garage_Area DFBETAS = -13E-5 
 Observation Number = 226  Garage_Area DFBETAS = 0.0873 
 Observation Number = 225  Garage_Area DFBETAS = -0.001 
 Observation Number = 224  Garage_Area DFBETAS = 0.0049 
 Observation Number = 223  Garage_Area DFBETAS = 0.0067 
 Observation Number = 222  Garage_Area DFBETAS = -0.039 
 Observation Number = 221  Garage_Area DFBETAS = 0.0369 
 Observation Number = 220  Garage_Area DFBETAS = -0.004 
 Observation Number = 219  Garage_Area DFBETAS = -0.064 
 Observation Number = 217  Garage_Area DFBETAS = 0.0947 
 Observation Number = 216  Garage_Area DFBETAS = 0.0142 
 Observation Number = 215  Garage_Area DFBETAS = -0.05 
 Observation Number = 214  Garage_Area DFBETAS = 0.0048 
 Observation Number = 212  Garage_Area DFBETAS = 0.0175 
 Observation Number = 211  Garage_Area DFBETAS = 0.0572 
 Observation Number = 210  Garage_Area DFBETAS = 0.0164 
 Observation Number = 209  Garage_Area DFBETAS = 0.0225 
 Observation Number = 208  Garage_Area DFBETAS = -0.025 
 Observation Number = 207  Garage_Area DFBETAS = 0.0316 
 Observation Number = 206  Garage_Area DFBETAS = -0.02 
 Observation Number = 205  Garage_Area DFBETAS = 0.0074 
 Observation Number = 204  Garage_Area DFBETAS = -0.076 
 Observation Number = 203  Garage_Area DFBETAS = -0.111 
 Observation Number = 202  Garage_Area DFBETAS = 0.0048 
 Observation Number = 201  Garage_Area DFBETAS = 0.0157 
 Observation Number = 200  Garage_Area DFBETAS = -68E-5 
 Observation Number = 199  Garage_Area DFBETAS = -0.005 
 Observation Number = 198  Garage_Area DFBETAS = 0.0113 
 Observation Number = 197  Garage_Area DFBETAS = -0.001 
 Observation Number = 196  Garage_Area DFBETAS = -0.006 
 Observation Number = 195  Garage_Area DFBETAS = 0.0053 
 Observation Number = 194  Garage_Area DFBETAS = -0.005 
 Observation Number = 193  Garage_Area DFBETAS = 0.0082 
 Observation Number = 192  Garage_Area DFBETAS = 0.0172 
 Observation Number = 191  Garage_Area DFBETAS = 0.0049 
 Observation Number = 190  Garage_Area DFBETAS = -0.002 
 Observation Number = 189  Garage_Area DFBETAS = 0.0229 
 Observation Number = 188  Garage_Area DFBETAS = 0.0206 
 Observation Number = 187  Garage_Area DFBETAS = 0.013 
 Observation Number = 186  Garage_Area DFBETAS = 0.1001 
 Observation Number = 185  Garage_Area DFBETAS = 0.0261 
 Observation Number = 184  Garage_Area DFBETAS = -0.04 
 Observation Number = 183  Garage_Area DFBETAS = 0.0137 
 Observation Number = 182  Garage_Area DFBETAS = -0.003 
 Observation Number = 181  Garage_Area DFBETAS = -0.005 
 Observation Number = 180  Garage_Area DFBETAS = -0.014 
 Observation Number = 179  Garage_Area DFBETAS = -0.021 
 Observation Number = 178  Garage_Area DFBETAS = 0.0067 
 Observation Number = 177  Garage_Area DFBETAS = -0.005 
 Observation Number = 176  Garage_Area DFBETAS = 0.0273 
 Observation Number = 175  Garage_Area DFBETAS = -0.015 
 Observation Number = 174  Garage_Area DFBETAS = 0.038 
 Observation Number = 173  Garage_Area DFBETAS = -0.039 
 Observation Number = 172  Garage_Area DFBETAS = 0.0086 
 Observation Number = 171  Garage_Area DFBETAS = -29E-5 
 Observation Number = 170  Garage_Area DFBETAS = -0.037 
 Observation Number = 169  Garage_Area DFBETAS = 0.0441 
 Observation Number = 168  Garage_Area DFBETAS = 0.0061 
 Observation Number = 167  Garage_Area DFBETAS = -0.023 
 Observation Number = 166  Garage_Area DFBETAS = 0.0184 
 Observation Number = 165  Garage_Area DFBETAS = -0.019 
 Observation Number = 164  Garage_Area DFBETAS = 0.0341 
 Observation Number = 163  Garage_Area DFBETAS = -0.083 
 Observation Number = 162  Garage_Area DFBETAS = 2.9E-5 
 Observation Number = 161  Garage_Area DFBETAS = 0.0135 
 Observation Number = 160  Garage_Area DFBETAS = 0.0089 
 Observation Number = 159  Garage_Area DFBETAS = 0.1153 
 Observation Number = 158  Garage_Area DFBETAS = 0.0292 
 Observation Number = 157  Garage_Area DFBETAS = 0.0691 
 Observation Number = 156  Garage_Area DFBETAS = 0.0034 
 Observation Number = 155  Garage_Area DFBETAS = 0.1029 
 Observation Number = 154  Garage_Area DFBETAS = 0.0251 
 Observation Number = 153  Garage_Area DFBETAS = -0.062 
 Observation Number = 152  Garage_Area DFBETAS = 0.0282 
 Observation Number = 151  Garage_Area DFBETAS = -0.002 
 Observation Number = 150  Garage_Area DFBETAS = -0.089 
 Observation Number = 149  Garage_Area DFBETAS = -0.028 
 Observation Number = 148  Garage_Area DFBETAS = 0.1082 
 Observation Number = 146  Garage_Area DFBETAS = -0.002 
 Observation Number = 145  Garage_Area DFBETAS = 0.0292 
 Observation Number = 144  Garage_Area DFBETAS = -0.006 
 Observation Number = 143  Garage_Area DFBETAS = -0.038 
 Observation Number = 142  Garage_Area DFBETAS = -0.003 
 Observation Number = 141  Garage_Area DFBETAS = -0.011 
 Observation Number = 140  Garage_Area DFBETAS = 7.1E-5 
 Observation Number = 139  Garage_Area DFBETAS = 0.0022 
 Observation Number = 138  Garage_Area DFBETAS = -0.007 
 Observation Number = 137  Garage_Area DFBETAS = .00092 
 Observation Number = 136  Garage_Area DFBETAS = -23E-5 
 Observation Number = 135  Garage_Area DFBETAS = -0.024 
 Observation Number = 134  Garage_Area DFBETAS = 0.0165 
 Observation Number = 133  Garage_Area DFBETAS = -0.013 
 Observation Number = 132  Garage_Area DFBETAS = 1.1E-6 
 Observation Number = 131  Garage_Area DFBETAS = 0.0507 
 Observation Number = 130  Garage_Area DFBETAS = -96E-5 
 Observation Number = 129  Garage_Area DFBETAS = 0.0143 
 Observation Number = 128  Garage_Area DFBETAS = -0.012 
 Observation Number = 127  Garage_Area DFBETAS = .00076 
 Observation Number = 125  Garage_Area DFBETAS = 0.0085 
 Observation Number = 124  Garage_Area DFBETAS = 0.0344 
 Observation Number = 122  Garage_Area DFBETAS = -62E-5 
 Observation Number = 121  Garage_Area DFBETAS = -36E-5 
 Observation Number = 120  Garage_Area DFBETAS = 0.11 
 Observation Number = 119  Garage_Area DFBETAS = -0.024 
 Observation Number = 118  Garage_Area DFBETAS = -0.009 
 Observation Number = 117  Garage_Area DFBETAS = -0.016 
 Observation Number = 116  Garage_Area DFBETAS = 0.0155 
 Observation Number = 115  Garage_Area DFBETAS = 0.0216 
 Observation Number = 113  Garage_Area DFBETAS = 0.0053 
 Observation Number = 112  Garage_Area DFBETAS = -0.04 
 Observation Number = 111  Garage_Area DFBETAS = -0.01 
 Observation Number = 109  Garage_Area DFBETAS = -0.012 
 Observation Number = 108  Garage_Area DFBETAS = 0.0208 
 Observation Number = 107  Garage_Area DFBETAS = -0.029 
 Observation Number = 106  Garage_Area DFBETAS = 3.8E-5 
 Observation Number = 105  Garage_Area DFBETAS = -0.004 
 Observation Number = 104  Garage_Area DFBETAS = -0.047 
 Observation Number = 103  Garage_Area DFBETAS = -0.037 
 Observation Number = 102  Garage_Area DFBETAS = 0.0096 
 Observation Number = 100  Garage_Area DFBETAS = 0.0068 
 Observation Number = 99  Garage_Area DFBETAS = -0.058 
 Observation Number = 98  Garage_Area DFBETAS = -0.101 
 Observation Number = 97  Garage_Area DFBETAS = 0.0031 
 Observation Number = 96  Garage_Area DFBETAS = -0.009 
 Observation Number = 95  Garage_Area DFBETAS = -0.02 
 Observation Number = 94  Garage_Area DFBETAS = 7.4E-5 
 Observation Number = 93  Garage_Area DFBETAS = 0.0021 
 Observation Number = 92  Garage_Area DFBETAS = -0.012 
 Observation Number = 91  Garage_Area DFBETAS = -0.015 
 Observation Number = 90  Garage_Area DFBETAS = 0.0245 
 Observation Number = 89  Garage_Area DFBETAS = -52E-5 
 Observation Number = 88  Garage_Area DFBETAS = 0.0263 
 Observation Number = 87  Garage_Area DFBETAS = 0.009 
 Observation Number = 86  Garage_Area DFBETAS = 0.1066 
 Observation Number = 85  Garage_Area DFBETAS = .00033 
 Observation Number = 84  Garage_Area DFBETAS = 0.0856 
 Observation Number = 83  Garage_Area DFBETAS = -0.031 
 Observation Number = 82  Garage_Area DFBETAS = -0.024 
 Observation Number = 81  Garage_Area DFBETAS = 0.009 
 Observation Number = 80  Garage_Area DFBETAS = 0.0206 
 Observation Number = 79  Garage_Area DFBETAS = 0.0019 
 Observation Number = 78  Garage_Area DFBETAS = -0.052 
 Observation Number = 77  Garage_Area DFBETAS = 0.0179 
 Observation Number = 75  Garage_Area DFBETAS = -0.002 
 Observation Number = 74  Garage_Area DFBETAS = 0.0535 
 Observation Number = 73  Garage_Area DFBETAS = 0.0311 
 Observation Number = 72  Garage_Area DFBETAS = 0.0246 
 Observation Number = 71  Garage_Area DFBETAS = 0.0258 
 Observation Number = 70  Garage_Area DFBETAS = -0.019 
 Observation Number = 69  Garage_Area DFBETAS = -0.012 
 Observation Number = 67  Garage_Area DFBETAS = -0.008 
 Observation Number = 66  Garage_Area DFBETAS = -0.031 
 Observation Number = 65  Garage_Area DFBETAS = -0.013 
 Observation Number = 64  Garage_Area DFBETAS = -0.044 
 Observation Number = 63  Garage_Area DFBETAS = 0.0017 
 Observation Number = 62  Garage_Area DFBETAS = 0.0083 
 Observation Number = 61  Garage_Area DFBETAS = -0.004 
 Observation Number = 60  Garage_Area DFBETAS = -0.003 
 Observation Number = 59  Garage_Area DFBETAS = -0.055 
 Observation Number = 58  Garage_Area DFBETAS = 0.0011 
 Observation Number = 57  Garage_Area DFBETAS = -0.036 
 Observation Number = 56  Garage_Area DFBETAS = 0.054 
 Observation Number = 55  Garage_Area DFBETAS = -0.055 
 Observation Number = 54  Garage_Area DFBETAS = -0.012 
 Observation Number = 53  Garage_Area DFBETAS = -0.021 
 Observation Number = 52  Garage_Area DFBETAS = 0.0338 
 Observation Number = 51  Garage_Area DFBETAS = 0.002 
 Observation Number = 50  Garage_Area DFBETAS = -0.028 
 Observation Number = 49  Garage_Area DFBETAS = -0.025 
 Observation Number = 48  Garage_Area DFBETAS = 0.0024 
 Observation Number = 47  Garage_Area DFBETAS = 0.0181 
 Observation Number = 46  Garage_Area DFBETAS = 0.0292 
 Observation Number = 45  Garage_Area DFBETAS = -0.009 
 Observation Number = 44  Garage_Area DFBETAS = 0.0046 
 Observation Number = 43  Garage_Area DFBETAS = 0.0008 
 Observation Number = 42  Garage_Area DFBETAS = -0.032 
 Observation Number = 41  Garage_Area DFBETAS = -0.013 
 Observation Number = 40  Garage_Area DFBETAS = -0.046 
 Observation Number = 39  Garage_Area DFBETAS = 0.0326 
 Observation Number = 38  Garage_Area DFBETAS = 0.0231 
 Observation Number = 37  Garage_Area DFBETAS = -0.058 
 Observation Number = 36  Garage_Area DFBETAS = 0.0043 
 Observation Number = 35  Garage_Area DFBETAS = 0.0362 
 Observation Number = 34  Garage_Area DFBETAS = 0.0123 
 Observation Number = 33  Garage_Area DFBETAS = 0.016 
 Observation Number = 32  Garage_Area DFBETAS = -59E-6 
 Observation Number = 31  Garage_Area DFBETAS = .00014 
 Observation Number = 30  Garage_Area DFBETAS = 0.026 
 Observation Number = 29  Garage_Area DFBETAS = 0.0397 
 Observation Number = 28  Garage_Area DFBETAS = -0.095 
 Observation Number = 27  Garage_Area DFBETAS = -0.008 
 Observation Number = 26  Garage_Area DFBETAS = -0.053 
 Observation Number = 25  Garage_Area DFBETAS = -0.025 
 Observation Number = 24  Garage_Area DFBETAS = 0.0576 
 Observation Number = 23  Garage_Area DFBETAS = -0.087 
 Observation Number = 22  Garage_Area DFBETAS = -0.007 
 Observation Number = 20  Garage_Area DFBETAS = 0.0015 
 Observation Number = 19  Garage_Area DFBETAS = 0.0027 
 Observation Number = 18  Garage_Area DFBETAS = 0.0232 
 Observation Number = 17  Garage_Area DFBETAS = 0.0625 
 Observation Number = 16  Garage_Area DFBETAS = -0.005 
 Observation Number = 15  Garage_Area DFBETAS = -0.009 
 Observation Number = 14  Garage_Area DFBETAS = -0.077 
 Observation Number = 13  Garage_Area DFBETAS = 0.0692 
 Observation Number = 12  Garage_Area DFBETAS = -0.003 
 Observation Number = 11  Garage_Area DFBETAS = -0.006 
 Observation Number = 10  Garage_Area DFBETAS = 0.0328 
 Observation Number = 9  Garage_Area DFBETAS = 0.0165 
 Observation Number = 8  Garage_Area DFBETAS = 0.0194 
 Observation Number = 7  Garage_Area DFBETAS = 0.0025 
 Observation Number = 6  Garage_Area DFBETAS = -0.032 
 Observation Number = 5  Garage_Area DFBETAS = 0.0031 
 Observation Number = 4  Garage_Area DFBETAS = -0.082 
 Observation Number = 3  Garage_Area DFBETAS = 0.0099 
 Observation Number = 2  Garage_Area DFBETAS = 0.0714 
 Observation Number = 1
 Y = -0.115  Y = 0.1155  Deck_Porch_Area DFBETAS = -0.548 
 Observation Number = 240  Deck_Porch_Area DFBETAS = 0.257 
 Observation Number = 233  Deck_Porch_Area DFBETAS = 0.2554 
 Observation Number = 227  Deck_Porch_Area DFBETAS = 0.187 
 Observation Number = 218  Deck_Porch_Area DFBETAS = -0.312 
 Observation Number = 168  Deck_Porch_Area DFBETAS = -0.136 
 Observation Number = 166  Deck_Porch_Area DFBETAS = 0.1892 
 Observation Number = 151  Deck_Porch_Area DFBETAS = 0.1234 
 Observation Number = 126  Deck_Porch_Area DFBETAS = 0.1706 
 Observation Number = 102  Deck_Porch_Area DFBETAS = 0.1688 
 Observation Number = 58  Deck_Porch_Area DFBETAS = 0.186 
 Observation Number = 54  Deck_Porch_Area DFBETAS = 0.1367 
 Observation Number = 36  Deck_Porch_Area DFBETAS = -0.196 
 Observation Number = 17  Deck_Porch_Area DFBETAS = -0.182 
 Observation Number = 1  Deck_Porch_Area DFBETAS = -0.548 
 Observation Number = 240  Deck_Porch_Area DFBETAS = 0.257 
 Observation Number = 233  Deck_Porch_Area DFBETAS = 0.2554 
 Observation Number = 227  Deck_Porch_Area DFBETAS = 0.187 
 Observation Number = 218  Deck_Porch_Area DFBETAS = -0.312 
 Observation Number = 168  Deck_Porch_Area DFBETAS = -0.136 
 Observation Number = 166  Deck_Porch_Area DFBETAS = 0.1892 
 Observation Number = 151  Deck_Porch_Area DFBETAS = 0.1234 
 Observation Number = 126  Deck_Porch_Area DFBETAS = 0.1706 
 Observation Number = 102  Deck_Porch_Area DFBETAS = 0.1688 
 Observation Number = 58  Deck_Porch_Area DFBETAS = 0.186 
 Observation Number = 54  Deck_Porch_Area DFBETAS = 0.1367 
 Observation Number = 36  Deck_Porch_Area DFBETAS = -0.196 
 Observation Number = 17  Deck_Porch_Area DFBETAS = -0.182 
 Observation Number = 1  Deck_Porch_Area DFBETAS = -0.014 
 Observation Number = 300  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 299  Deck_Porch_Area DFBETAS = 0.0465 
 Observation Number = 298  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 297  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 296  Deck_Porch_Area DFBETAS = 0.02 
 Observation Number = 295  Deck_Porch_Area DFBETAS = 0.0372 
 Observation Number = 294  Deck_Porch_Area DFBETAS = 0.022 
 Observation Number = 293  Deck_Porch_Area DFBETAS = -0.034 
 Observation Number = 292  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 291  Deck_Porch_Area DFBETAS = -0.009 
 Observation Number = 290  Deck_Porch_Area DFBETAS = 0.0068 
 Observation Number = 289  Deck_Porch_Area DFBETAS = -0.025 
 Observation Number = 288  Deck_Porch_Area DFBETAS = 0.0029 
 Observation Number = 287  Deck_Porch_Area DFBETAS = 0.0481 
 Observation Number = 286  Deck_Porch_Area DFBETAS = -0.044 
 Observation Number = 285  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 284  Deck_Porch_Area DFBETAS = 0.0307 
 Observation Number = 283  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 282  Deck_Porch_Area DFBETAS = 0.0222 
 Observation Number = 281  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 280  Deck_Porch_Area DFBETAS = -.0002 
 Observation Number = 279  Deck_Porch_Area DFBETAS = -0.033 
 Observation Number = 278  Deck_Porch_Area DFBETAS = -0.05 
 Observation Number = 277  Deck_Porch_Area DFBETAS = -0.027 
 Observation Number = 276  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 275  Deck_Porch_Area DFBETAS = 0.013 
 Observation Number = 274  Deck_Porch_Area DFBETAS = 0.0602 
 Observation Number = 273  Deck_Porch_Area DFBETAS = 0.0128 
 Observation Number = 272  Deck_Porch_Area DFBETAS = 0.0079 
 Observation Number = 271  Deck_Porch_Area DFBETAS = 0.0046 
 Observation Number = 270  Deck_Porch_Area DFBETAS = 0.0113 
 Observation Number = 269  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 268  Deck_Porch_Area DFBETAS = -0.05 
 Observation Number = 267  Deck_Porch_Area DFBETAS = -0.06 
 Observation Number = 266  Deck_Porch_Area DFBETAS = 0.0547 
 Observation Number = 265  Deck_Porch_Area DFBETAS = 0.0062 
 Observation Number = 264  Deck_Porch_Area DFBETAS = -0.033 
 Observation Number = 263  Deck_Porch_Area DFBETAS = -0.075 
 Observation Number = 262  Deck_Porch_Area DFBETAS = 0.0518 
 Observation Number = 261  Deck_Porch_Area DFBETAS = -0.082 
 Observation Number = 260  Deck_Porch_Area DFBETAS = 0.0021 
 Observation Number = 259  Deck_Porch_Area DFBETAS = -0.012 
 Observation Number = 258  Deck_Porch_Area DFBETAS = 0.002 
 Observation Number = 257  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 256  Deck_Porch_Area DFBETAS = 0.0018 
 Observation Number = 255  Deck_Porch_Area DFBETAS = -0.028 
 Observation Number = 254  Deck_Porch_Area DFBETAS = -0.024 
 Observation Number = 253  Deck_Porch_Area DFBETAS = 0.0404 
 Observation Number = 252  Deck_Porch_Area DFBETAS = 0.0174 
 Observation Number = 251  Deck_Porch_Area DFBETAS = 0.0343 
 Observation Number = 250  Deck_Porch_Area DFBETAS = -0.012 
 Observation Number = 249  Deck_Porch_Area DFBETAS = -0.005 
 Observation Number = 248  Deck_Porch_Area DFBETAS = .00071 
 Observation Number = 247  Deck_Porch_Area DFBETAS = 0.0777 
 Observation Number = 246  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 245  Deck_Porch_Area DFBETAS = -0.013 
 Observation Number = 244  Deck_Porch_Area DFBETAS = -0.022 
 Observation Number = 243  Deck_Porch_Area DFBETAS = 0.0706 
 Observation Number = 242  Deck_Porch_Area DFBETAS = -0.009 
 Observation Number = 241  Deck_Porch_Area DFBETAS = 0.064 
 Observation Number = 239  Deck_Porch_Area DFBETAS = 0.0552 
 Observation Number = 238  Deck_Porch_Area DFBETAS = -0.021 
 Observation Number = 237  Deck_Porch_Area DFBETAS = 0.0015 
 Observation Number = 236  Deck_Porch_Area DFBETAS = 0.0487 
 Observation Number = 235  Deck_Porch_Area DFBETAS = 0.0244 
 Observation Number = 234  Deck_Porch_Area DFBETAS = -0.031 
 Observation Number = 232  Deck_Porch_Area DFBETAS = -0.019 
 Observation Number = 231  Deck_Porch_Area DFBETAS = 0.0429 
 Observation Number = 230  Deck_Porch_Area DFBETAS = -0.012 
 Observation Number = 229  Deck_Porch_Area DFBETAS = -0.045 
 Observation Number = 228  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 226  Deck_Porch_Area DFBETAS = -0.058 
 Observation Number = 225  Deck_Porch_Area DFBETAS = 0.0106 
 Observation Number = 224  Deck_Porch_Area DFBETAS = 0.0167 
 Observation Number = 223  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 222  Deck_Porch_Area DFBETAS = -0.016 
 Observation Number = 221  Deck_Porch_Area DFBETAS = 0.0427 
 Observation Number = 220  Deck_Porch_Area DFBETAS = 0.0012 
 Observation Number = 219  Deck_Porch_Area DFBETAS = -0.011 
 Observation Number = 217  Deck_Porch_Area DFBETAS = -0.088 
 Observation Number = 216  Deck_Porch_Area DFBETAS = 0.0071 
 Observation Number = 215  Deck_Porch_Area DFBETAS = -0.005 
 Observation Number = 214  Deck_Porch_Area DFBETAS = -0.059 
 Observation Number = 213  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 212  Deck_Porch_Area DFBETAS = -0.069 
 Observation Number = 211  Deck_Porch_Area DFBETAS = -0.046 
 Observation Number = 210  Deck_Porch_Area DFBETAS = -0.005 
 Observation Number = 209  Deck_Porch_Area DFBETAS = -0.019 
 Observation Number = 208  Deck_Porch_Area DFBETAS = -0.035 
 Observation Number = 207  Deck_Porch_Area DFBETAS = 0.0551 
 Observation Number = 206  Deck_Porch_Area DFBETAS = -0.02 
 Observation Number = 205  Deck_Porch_Area DFBETAS = 0.0128 
 Observation Number = 204  Deck_Porch_Area DFBETAS = 0.056 
 Observation Number = 203  Deck_Porch_Area DFBETAS = 0.0236 
 Observation Number = 202  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 201  Deck_Porch_Area DFBETAS = -0.033 
 Observation Number = 200  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 199  Deck_Porch_Area DFBETAS = -0.009 
 Observation Number = 198  Deck_Porch_Area DFBETAS = 0.0011 
 Observation Number = 197  Deck_Porch_Area DFBETAS = .00066 
 Observation Number = 196  Deck_Porch_Area DFBETAS = -0.016 
 Observation Number = 195  Deck_Porch_Area DFBETAS = 0.0129 
 Observation Number = 194  Deck_Porch_Area DFBETAS = 0.0155 
 Observation Number = 193  Deck_Porch_Area DFBETAS = 0.0151 
 Observation Number = 192  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 191  Deck_Porch_Area DFBETAS = -0.001 
 Observation Number = 190  Deck_Porch_Area DFBETAS = -0.02 
 Observation Number = 189  Deck_Porch_Area DFBETAS = -0.039 
 Observation Number = 188  Deck_Porch_Area DFBETAS = 0.0078 
 Observation Number = 187  Deck_Porch_Area DFBETAS = -0.007 
 Observation Number = 186  Deck_Porch_Area DFBETAS = 0.0065 
 Observation Number = 185  Deck_Porch_Area DFBETAS = -68E-5 
 Observation Number = 184  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 183  Deck_Porch_Area DFBETAS = -0.026 
 Observation Number = 182  Deck_Porch_Area DFBETAS = 0.0066 
 Observation Number = 181  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 180  Deck_Porch_Area DFBETAS = -0.001 
 Observation Number = 179  Deck_Porch_Area DFBETAS = 0.0017 
 Observation Number = 178  Deck_Porch_Area DFBETAS = -0.016 
 Observation Number = 177  Deck_Porch_Area DFBETAS = 0.0237 
 Observation Number = 176  Deck_Porch_Area DFBETAS = -0.039 
 Observation Number = 175  Deck_Porch_Area DFBETAS = -0.034 
 Observation Number = 174  Deck_Porch_Area DFBETAS = -0.099 
 Observation Number = 173  Deck_Porch_Area DFBETAS = -0.014 
 Observation Number = 172  Deck_Porch_Area DFBETAS = 0.0093 
 Observation Number = 171  Deck_Porch_Area DFBETAS = -0.004 
 Observation Number = 170  Deck_Porch_Area DFBETAS = -0.072 
 Observation Number = 169  Deck_Porch_Area DFBETAS = 0.0219 
 Observation Number = 167  Deck_Porch_Area DFBETAS = -0.028 
 Observation Number = 165  Deck_Porch_Area DFBETAS = -0.021 
 Observation Number = 164  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 163  Deck_Porch_Area DFBETAS = 0.0782 
 Observation Number = 162  Deck_Porch_Area DFBETAS = -0.001 
 Observation Number = 161  Deck_Porch_Area DFBETAS = 0.0246 
 Observation Number = 160  Deck_Porch_Area DFBETAS = 0.0057 
 Observation Number = 159  Deck_Porch_Area DFBETAS = 0.0345 
 Observation Number = 158  Deck_Porch_Area DFBETAS = 0.0218 
 Observation Number = 157  Deck_Porch_Area DFBETAS = 0.0097 
 Observation Number = 156  Deck_Porch_Area DFBETAS = 0.0012 
 Observation Number = 155  Deck_Porch_Area DFBETAS = 0.0279 
 Observation Number = 154  Deck_Porch_Area DFBETAS = 0.0413 
 Observation Number = 153  Deck_Porch_Area DFBETAS = -0.007 
 Observation Number = 152  Deck_Porch_Area DFBETAS = 0.0138 
 Observation Number = 150  Deck_Porch_Area DFBETAS = 0.0295 
 Observation Number = 149  Deck_Porch_Area DFBETAS = -0.024 
 Observation Number = 148  Deck_Porch_Area DFBETAS = 0.0194 
 Observation Number = 147  Deck_Porch_Area DFBETAS = -0.037 
 Observation Number = 146  Deck_Porch_Area DFBETAS = -23E-5 
 Observation Number = 145  Deck_Porch_Area DFBETAS = -0.017 
 Observation Number = 144  Deck_Porch_Area DFBETAS = .00076 
 Observation Number = 143  Deck_Porch_Area DFBETAS = 0.0275 
 Observation Number = 142  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 141  Deck_Porch_Area DFBETAS = -0.028 
 Observation Number = 140  Deck_Porch_Area DFBETAS = 0.0003 
 Observation Number = 139  Deck_Porch_Area DFBETAS = 5.6E-5 
 Observation Number = 138  Deck_Porch_Area DFBETAS = 0.0073 
 Observation Number = 137  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 136  Deck_Porch_Area DFBETAS = 0.0048 
 Observation Number = 135  Deck_Porch_Area DFBETAS = 0.0281 
 Observation Number = 134  Deck_Porch_Area DFBETAS = 0.0194 
 Observation Number = 133  Deck_Porch_Area DFBETAS = 0.0023 
 Observation Number = 132  Deck_Porch_Area DFBETAS = 3.2E-5 
 Observation Number = 131  Deck_Porch_Area DFBETAS = .00061 
 Observation Number = 130  Deck_Porch_Area DFBETAS = 1.6E-5 
 Observation Number = 129  Deck_Porch_Area DFBETAS = -0.043 
 Observation Number = 128  Deck_Porch_Area DFBETAS = -0.05 
 Observation Number = 127  Deck_Porch_Area DFBETAS = .00055 
 Observation Number = 125  Deck_Porch_Area DFBETAS = -0.018 
 Observation Number = 124  Deck_Porch_Area DFBETAS = -0.056 
 Observation Number = 123  Deck_Porch_Area DFBETAS = -0.022 
 Observation Number = 122  Deck_Porch_Area DFBETAS = -0.011 
 Observation Number = 121  Deck_Porch_Area DFBETAS = .00012 
 Observation Number = 120  Deck_Porch_Area DFBETAS = 0.008 
 Observation Number = 119  Deck_Porch_Area DFBETAS = -0.007 
 Observation Number = 118  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 117  Deck_Porch_Area DFBETAS = 0.0015 
 Observation Number = 116  Deck_Porch_Area DFBETAS = 0.0447 
 Observation Number = 115  Deck_Porch_Area DFBETAS = -0.095 
 Observation Number = 114  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 113  Deck_Porch_Area DFBETAS = -0.012 
 Observation Number = 112  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 111  Deck_Porch_Area DFBETAS = 0.0512 
 Observation Number = 110  Deck_Porch_Area DFBETAS = 0.0466 
 Observation Number = 109  Deck_Porch_Area DFBETAS = -0.013 
 Observation Number = 108  Deck_Porch_Area DFBETAS = -0.044 
 Observation Number = 107  Deck_Porch_Area DFBETAS = 0.0181 
 Observation Number = 106  Deck_Porch_Area DFBETAS = -0.005 
 Observation Number = 105  Deck_Porch_Area DFBETAS = 0.0063 
 Observation Number = 104  Deck_Porch_Area DFBETAS = -0.103 
 Observation Number = 103  Deck_Porch_Area DFBETAS = -0.095 
 Observation Number = 101  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 100  Deck_Porch_Area DFBETAS = 0.0018 
 Observation Number = 99  Deck_Porch_Area DFBETAS = 0.0171 
 Observation Number = 98  Deck_Porch_Area DFBETAS = 0.0264 
 Observation Number = 97  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 96  Deck_Porch_Area DFBETAS = 0.0676 
 Observation Number = 95  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 94  Deck_Porch_Area DFBETAS = 9.9E-5 
 Observation Number = 93  Deck_Porch_Area DFBETAS = -0.002 
 Observation Number = 92  Deck_Porch_Area DFBETAS = 0.0632 
 Observation Number = 91  Deck_Porch_Area DFBETAS = 0.0192 
 Observation Number = 90  Deck_Porch_Area DFBETAS = 0.0572 
 Observation Number = 89  Deck_Porch_Area DFBETAS = -0.029 
 Observation Number = 88  Deck_Porch_Area DFBETAS = -0.075 
 Observation Number = 87  Deck_Porch_Area DFBETAS = 0.0556 
 Observation Number = 86  Deck_Porch_Area DFBETAS = -0.05 
 Observation Number = 85  Deck_Porch_Area DFBETAS = -0.026 
 Observation Number = 84  Deck_Porch_Area DFBETAS = 0.0198 
 Observation Number = 83  Deck_Porch_Area DFBETAS = 0.0187 
 Observation Number = 82  Deck_Porch_Area DFBETAS = 0.0462 
 Observation Number = 81  Deck_Porch_Area DFBETAS = 0.0051 
 Observation Number = 80  Deck_Porch_Area DFBETAS = -0.024 
 Observation Number = 79  Deck_Porch_Area DFBETAS = 0.0109 
 Observation Number = 78  Deck_Porch_Area DFBETAS = 0.0131 
 Observation Number = 77  Deck_Porch_Area DFBETAS = -0.06 
 Observation Number = 76  Deck_Porch_Area DFBETAS = -0.011 
 Observation Number = 75  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 74  Deck_Porch_Area DFBETAS = -0.055 
 Observation Number = 73  Deck_Porch_Area DFBETAS = -0.019 
 Observation Number = 72  Deck_Porch_Area DFBETAS = -0.009 
 Observation Number = 71  Deck_Porch_Area DFBETAS = -0.013 
 Observation Number = 70  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 69  Deck_Porch_Area DFBETAS = -0.088 
 Observation Number = 68  Deck_Porch_Area DFBETAS = -0.03 
 Observation Number = 67  Deck_Porch_Area DFBETAS = 0.0078 
 Observation Number = 66  Deck_Porch_Area DFBETAS = -0.041 
 Observation Number = 65  Deck_Porch_Area DFBETAS = 0.0362 
 Observation Number = 64  Deck_Porch_Area DFBETAS = 0.0365 
 Observation Number = 63  Deck_Porch_Area DFBETAS = 0.0051 
 Observation Number = 62  Deck_Porch_Area DFBETAS = -0.009 
 Observation Number = 61  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 60  Deck_Porch_Area DFBETAS = -0.056 
 Observation Number = 59  Deck_Porch_Area DFBETAS = -0.046 
 Observation Number = 57  Deck_Porch_Area DFBETAS = 0.0402 
 Observation Number = 56  Deck_Porch_Area DFBETAS = 0.0094 
 Observation Number = 55  Deck_Porch_Area DFBETAS = -0.048 
 Observation Number = 53  Deck_Porch_Area DFBETAS = -0.044 
 Observation Number = 52  Deck_Porch_Area DFBETAS = 0.007 
 Observation Number = 51  Deck_Porch_Area DFBETAS = 0.0016 
 Observation Number = 50  Deck_Porch_Area DFBETAS = -61E-5 
 Observation Number = 49  Deck_Porch_Area DFBETAS = -0.003 
 Observation Number = 48  Deck_Porch_Area DFBETAS = 0.0312 
 Observation Number = 47  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 46  Deck_Porch_Area DFBETAS = 0.0511 
 Observation Number = 45  Deck_Porch_Area DFBETAS = 0.0027 
 Observation Number = 44  Deck_Porch_Area DFBETAS = -0.017 
 Observation Number = 43  Deck_Porch_Area DFBETAS = -0.001 
 Observation Number = 42  Deck_Porch_Area DFBETAS = -0.033 
 Observation Number = 41  Deck_Porch_Area DFBETAS = 0.0191 
 Observation Number = 40  Deck_Porch_Area DFBETAS = 0.0398 
 Observation Number = 39  Deck_Porch_Area DFBETAS = -0.027 
 Observation Number = 38  Deck_Porch_Area DFBETAS = -0.058 
 Observation Number = 37  Deck_Porch_Area DFBETAS = 0.1028 
 Observation Number = 35  Deck_Porch_Area DFBETAS = 0.0279 
 Observation Number = 34  Deck_Porch_Area DFBETAS = 0.0067 
 Observation Number = 33  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 32  Deck_Porch_Area DFBETAS = -69E-5 
 Observation Number = 31  Deck_Porch_Area DFBETAS = .00013 
 Observation Number = 30  Deck_Porch_Area DFBETAS = -0.014 
 Observation Number = 29  Deck_Porch_Area DFBETAS = -0.06 
 Observation Number = 28  Deck_Porch_Area DFBETAS = 0.0314 
 Observation Number = 27  Deck_Porch_Area DFBETAS = -0.01 
 Observation Number = 26  Deck_Porch_Area DFBETAS = 0.0734 
 Observation Number = 25  Deck_Porch_Area DFBETAS = 0.1047 
 Observation Number = 24  Deck_Porch_Area DFBETAS = -0.043 
 Observation Number = 23  Deck_Porch_Area DFBETAS = -0.052 
 Observation Number = 22  Deck_Porch_Area DFBETAS = 0.0974 
 Observation Number = 21  Deck_Porch_Area DFBETAS = -0.006 
 Observation Number = 20  Deck_Porch_Area DFBETAS = 0.0032 
 Observation Number = 19  Deck_Porch_Area DFBETAS = 0.0183 
 Observation Number = 18  Deck_Porch_Area DFBETAS = 0.0462 
 Observation Number = 16  Deck_Porch_Area DFBETAS = 0.0057 
 Observation Number = 15  Deck_Porch_Area DFBETAS = -0.032 
 Observation Number = 14  Deck_Porch_Area DFBETAS = 0.0692 
 Observation Number = 13  Deck_Porch_Area DFBETAS = 0.0423 
 Observation Number = 12  Deck_Porch_Area DFBETAS = -0.008 
 Observation Number = 11  Deck_Porch_Area DFBETAS = 0.0114 
 Observation Number = 10  Deck_Porch_Area DFBETAS = 0.0624 
 Observation Number = 9  Deck_Porch_Area DFBETAS = -0.026 
 Observation Number = 8  Deck_Porch_Area DFBETAS = 0.0805 
 Observation Number = 7  Deck_Porch_Area DFBETAS = -0.011 
 Observation Number = 6  Deck_Porch_Area DFBETAS = 0.0475 
 Observation Number = 5  Deck_Porch_Area DFBETAS = -0.015 
 Observation Number = 4  Deck_Porch_Area DFBETAS = -0.014 
 Observation Number = 3  Deck_Porch_Area DFBETAS = 0.0094 
 Observation Number = 2
 Y = -0.115  Y = 0.1155  Lot_Area DFBETAS = -0.347 
 Observation Number = 292  Lot_Area DFBETAS = -0.133 
 Observation Number = 260  Lot_Area DFBETAS = 0.2717 
 Observation Number = 242  Lot_Area DFBETAS = 0.255 
 Observation Number = 240  Lot_Area DFBETAS = 0.2007 
 Observation Number = 233  Lot_Area DFBETAS = -0.725 
 Observation Number = 218  Lot_Area DFBETAS = 0.1464 
 Observation Number = 216  Lot_Area DFBETAS = -0.137 
 Observation Number = 213  Lot_Area DFBETAS = -0.153 
 Observation Number = 185  Lot_Area DFBETAS = 0.1281 
 Observation Number = 173  Lot_Area DFBETAS = 0.242 
 Observation Number = 151  Lot_Area DFBETAS = -0.488 
 Observation Number = 123  Lot_Area DFBETAS = 0.1433 
 Observation Number = 110  Lot_Area DFBETAS = 0.118 
 Observation Number = 103  Lot_Area DFBETAS = 0.1761 
 Observation Number = 48  Lot_Area DFBETAS = -0.119 
 Observation Number = 38  Lot_Area DFBETAS = 0.1203 
 Observation Number = 9  Lot_Area DFBETAS = -0.131 
 Observation Number = 7  Lot_Area DFBETAS = -0.121 
 Observation Number = 1  Lot_Area DFBETAS = -0.347 
 Observation Number = 292  Lot_Area DFBETAS = -0.133 
 Observation Number = 260  Lot_Area DFBETAS = 0.2717 
 Observation Number = 242  Lot_Area DFBETAS = 0.255 
 Observation Number = 240  Lot_Area DFBETAS = 0.2007 
 Observation Number = 233  Lot_Area DFBETAS = -0.725 
 Observation Number = 218  Lot_Area DFBETAS = 0.1464 
 Observation Number = 216  Lot_Area DFBETAS = -0.137 
 Observation Number = 213  Lot_Area DFBETAS = -0.153 
 Observation Number = 185  Lot_Area DFBETAS = 0.1281 
 Observation Number = 173  Lot_Area DFBETAS = 0.242 
 Observation Number = 151  Lot_Area DFBETAS = -0.488 
 Observation Number = 123  Lot_Area DFBETAS = 0.1433 
 Observation Number = 110  Lot_Area DFBETAS = 0.118 
 Observation Number = 103  Lot_Area DFBETAS = 0.1761 
 Observation Number = 48  Lot_Area DFBETAS = -0.119 
 Observation Number = 38  Lot_Area DFBETAS = 0.1203 
 Observation Number = 9  Lot_Area DFBETAS = -0.131 
 Observation Number = 7  Lot_Area DFBETAS = -0.121 
 Observation Number = 1  Lot_Area DFBETAS = -0.014 
 Observation Number = 300  Lot_Area DFBETAS = 0.1122 
 Observation Number = 299  Lot_Area DFBETAS = -0.035 
 Observation Number = 298  Lot_Area DFBETAS = 0.022 
 Observation Number = 297  Lot_Area DFBETAS = -0.043 
 Observation Number = 296  Lot_Area DFBETAS = -0.031 
 Observation Number = 295  Lot_Area DFBETAS = -0.078 
 Observation Number = 294  Lot_Area DFBETAS = -0.034 
 Observation Number = 293  Lot_Area DFBETAS = -0.006 
 Observation Number = 291  Lot_Area DFBETAS = -0.013 
 Observation Number = 290  Lot_Area DFBETAS = 0.0046 
 Observation Number = 289  Lot_Area DFBETAS = 0.0716 
 Observation Number = 288  Lot_Area DFBETAS = 0.0008 
 Observation Number = 287  Lot_Area DFBETAS = -0.01 
 Observation Number = 286  Lot_Area DFBETAS = 0.1011 
 Observation Number = 285  Lot_Area DFBETAS = -0.013 
 Observation Number = 284  Lot_Area DFBETAS = 0.0054 
 Observation Number = 283  Lot_Area DFBETAS = -0.01 
 Observation Number = 282  Lot_Area DFBETAS = 0.0205 
 Observation Number = 281  Lot_Area DFBETAS = 0.0574 
 Observation Number = 280  Lot_Area DFBETAS = .00067 
 Observation Number = 279  Lot_Area DFBETAS = 0.0772 
 Observation Number = 278  Lot_Area DFBETAS = 0.0528 
 Observation Number = 277  Lot_Area DFBETAS = -0.043 
 Observation Number = 276  Lot_Area DFBETAS = 0.0069 
 Observation Number = 275  Lot_Area DFBETAS = -0.03 
 Observation Number = 274  Lot_Area DFBETAS = -0.072 
 Observation Number = 273  Lot_Area DFBETAS = 0.0139 
 Observation Number = 272  Lot_Area DFBETAS = -0.002 
 Observation Number = 271  Lot_Area DFBETAS = -0.009 
 Observation Number = 270  Lot_Area DFBETAS = -0.021 
 Observation Number = 269  Lot_Area DFBETAS = 0.0097 
 Observation Number = 268  Lot_Area DFBETAS = -0.007 
 Observation Number = 267  Lot_Area DFBETAS = 0.0795 
 Observation Number = 266  Lot_Area DFBETAS = 0.0476 
 Observation Number = 265  Lot_Area DFBETAS = -0.003 
 Observation Number = 264  Lot_Area DFBETAS = 0.0388 
 Observation Number = 263  Lot_Area DFBETAS = -0.016 
 Observation Number = 262  Lot_Area DFBETAS = 0.0021 
 Observation Number = 261  Lot_Area DFBETAS = 0.0123 
 Observation Number = 259  Lot_Area DFBETAS = 0.0578 
 Observation Number = 258  Lot_Area DFBETAS = 0.0156 
 Observation Number = 257  Lot_Area DFBETAS = 0.0019 
 Observation Number = 256  Lot_Area DFBETAS = 0.001 
 Observation Number = 255  Lot_Area DFBETAS = 0.009 
 Observation Number = 254  Lot_Area DFBETAS = -0.002 
 Observation Number = 253  Lot_Area DFBETAS = 0.1092 
 Observation Number = 252  Lot_Area DFBETAS = 0.0749 
 Observation Number = 251  Lot_Area DFBETAS = 0.107 
 Observation Number = 250  Lot_Area DFBETAS = -94E-5 
 Observation Number = 249  Lot_Area DFBETAS = 0.0047 
 Observation Number = 248  Lot_Area DFBETAS = 0.0204 
 Observation Number = 247  Lot_Area DFBETAS = 0.0535 
 Observation Number = 246  Lot_Area DFBETAS = -0.009 
 Observation Number = 245  Lot_Area DFBETAS = 0.0021 
 Observation Number = 244  Lot_Area DFBETAS = -0.017 
 Observation Number = 243  Lot_Area DFBETAS = 0.0791 
 Observation Number = 241  Lot_Area DFBETAS = -0.029 
 Observation Number = 239  Lot_Area DFBETAS = 0.0402 
 Observation Number = 238  Lot_Area DFBETAS = 0.0141 
 Observation Number = 237  Lot_Area DFBETAS = 0.0023 
 Observation Number = 236  Lot_Area DFBETAS = -0.023 
 Observation Number = 235  Lot_Area DFBETAS = 0.0318 
 Observation Number = 234  Lot_Area DFBETAS = -0.017 
 Observation Number = 232  Lot_Area DFBETAS = -0.083 
 Observation Number = 231  Lot_Area DFBETAS = -0.036 
 Observation Number = 230  Lot_Area DFBETAS = 0.0219 
 Observation Number = 229  Lot_Area DFBETAS = 0.0464 
 Observation Number = 228  Lot_Area DFBETAS = 0.0465 
 Observation Number = 227  Lot_Area DFBETAS = 0.022 
 Observation Number = 226  Lot_Area DFBETAS = 0.0049 
 Observation Number = 225  Lot_Area DFBETAS = -0.004 
 Observation Number = 224  Lot_Area DFBETAS = -0.001 
 Observation Number = 223  Lot_Area DFBETAS = -0.004 
 Observation Number = 222  Lot_Area DFBETAS = -0.007 
 Observation Number = 221  Lot_Area DFBETAS = -0.014 
 Observation Number = 220  Lot_Area DFBETAS = -0.062 
 Observation Number = 219  Lot_Area DFBETAS = -0.005 
 Observation Number = 217  Lot_Area DFBETAS = 0.0083 
 Observation Number = 215  Lot_Area DFBETAS = -0.044 
 Observation Number = 214  Lot_Area DFBETAS = -0.006 
 Observation Number = 212  Lot_Area DFBETAS = -0.046 
 Observation Number = 211  Lot_Area DFBETAS = -0.058 
 Observation Number = 210  Lot_Area DFBETAS = 0.0143 
 Observation Number = 209  Lot_Area DFBETAS = -0.023 
 Observation Number = 208  Lot_Area DFBETAS = -0.038 
 Observation Number = 207  Lot_Area DFBETAS = 0.0024 
 Observation Number = 206  Lot_Area DFBETAS = 0.0212 
 Observation Number = 205  Lot_Area DFBETAS = -0.004 
 Observation Number = 204  Lot_Area DFBETAS = 0.0069 
 Observation Number = 203  Lot_Area DFBETAS = -0.052 
 Observation Number = 202  Lot_Area DFBETAS = -0.009 
 Observation Number = 201  Lot_Area DFBETAS = -0.008 
 Observation Number = 200  Lot_Area DFBETAS = -0.004 
 Observation Number = 199  Lot_Area DFBETAS = -0.008 
 Observation Number = 198  Lot_Area DFBETAS = 0.0019 
 Observation Number = 197  Lot_Area DFBETAS = -0.007 
 Observation Number = 196  Lot_Area DFBETAS = -0.002 
 Observation Number = 195  Lot_Area DFBETAS = -0.015 
 Observation Number = 194  Lot_Area DFBETAS = .00015 
 Observation Number = 193  Lot_Area DFBETAS = -0.015 
 Observation Number = 192  Lot_Area DFBETAS = 0.0095 
 Observation Number = 191  Lot_Area DFBETAS = -0.002 
 Observation Number = 190  Lot_Area DFBETAS = 0.004 
 Observation Number = 189  Lot_Area DFBETAS = 0.0018 
 Observation Number = 188  Lot_Area DFBETAS = -0.012 
 Observation Number = 187  Lot_Area DFBETAS = -0.018 
 Observation Number = 186  Lot_Area DFBETAS = 0.0185 
 Observation Number = 184  Lot_Area DFBETAS = 0.0165 
 Observation Number = 183  Lot_Area DFBETAS = 0.012 
 Observation Number = 182  Lot_Area DFBETAS = 0.0079 
 Observation Number = 181  Lot_Area DFBETAS = .00038 
 Observation Number = 180  Lot_Area DFBETAS = 0.0365 
 Observation Number = 179  Lot_Area DFBETAS = -0.028 
 Observation Number = 178  Lot_Area DFBETAS = 0.0406 
 Observation Number = 177  Lot_Area DFBETAS = 0.0099 
 Observation Number = 176  Lot_Area DFBETAS = -0.084 
 Observation Number = 175  Lot_Area DFBETAS = 0.0235 
 Observation Number = 174  Lot_Area DFBETAS = -0.014 
 Observation Number = 172  Lot_Area DFBETAS = 0.0241 
 Observation Number = 171  Lot_Area DFBETAS = -43E-5 
 Observation Number = 170  Lot_Area DFBETAS = -0.023 
 Observation Number = 169  Lot_Area DFBETAS = 0.0297 
 Observation Number = 168  Lot_Area DFBETAS = 0.0174 
 Observation Number = 167  Lot_Area DFBETAS = -0.042 
 Observation Number = 166  Lot_Area DFBETAS = 0.022 
 Observation Number = 165  Lot_Area DFBETAS = 0.0295 
 Observation Number = 164  Lot_Area DFBETAS = -0.003 
 Observation Number = 163  Lot_Area DFBETAS = -0.003 
 Observation Number = 162  Lot_Area DFBETAS = 0.0061 
 Observation Number = 161  Lot_Area DFBETAS = 0.0055 
 Observation Number = 160  Lot_Area DFBETAS = 0.0024 
 Observation Number = 159  Lot_Area DFBETAS = -0.062 
 Observation Number = 158  Lot_Area DFBETAS = -0.02 
 Observation Number = 157  Lot_Area DFBETAS = 0.0235 
 Observation Number = 156  Lot_Area DFBETAS = -0.003 
 Observation Number = 155  Lot_Area DFBETAS = -0.045 
 Observation Number = 154  Lot_Area DFBETAS = 0.0043 
 Observation Number = 153  Lot_Area DFBETAS = 0.078 
 Observation Number = 152  Lot_Area DFBETAS = -0.011 
 Observation Number = 150  Lot_Area DFBETAS = 0.019 
 Observation Number = 149  Lot_Area DFBETAS = 0.0201 
 Observation Number = 148  Lot_Area DFBETAS = -0.066 
 Observation Number = 147  Lot_Area DFBETAS = -0.013 
 Observation Number = 146  Lot_Area DFBETAS = -57E-5 
 Observation Number = 145  Lot_Area DFBETAS = -0.02 
 Observation Number = 144  Lot_Area DFBETAS = 0.0052 
 Observation Number = 143  Lot_Area DFBETAS = -0.011 
 Observation Number = 142  Lot_Area DFBETAS = -0.005 
 Observation Number = 141  Lot_Area DFBETAS = -0.011 
 Observation Number = 140  Lot_Area DFBETAS = .00011 
 Observation Number = 139  Lot_Area DFBETAS = 0.0274 
 Observation Number = 138  Lot_Area DFBETAS = -0.023 
 Observation Number = 137  Lot_Area DFBETAS = 0.0065 
 Observation Number = 136  Lot_Area DFBETAS = .00089 
 Observation Number = 135  Lot_Area DFBETAS = 0.0131 
 Observation Number = 134  Lot_Area DFBETAS = 0.0011 
 Observation Number = 133  Lot_Area DFBETAS = .00065 
 Observation Number = 132  Lot_Area DFBETAS = 4.7E-5 
 Observation Number = 131  Lot_Area DFBETAS = 0.0211 
 Observation Number = 130  Lot_Area DFBETAS = -54E-5 
 Observation Number = 129  Lot_Area DFBETAS = -0.023 
 Observation Number = 128  Lot_Area DFBETAS = 0.0186 
 Observation Number = 127  Lot_Area DFBETAS = 0.0977 
 Observation Number = 126  Lot_Area DFBETAS = -25E-5 
 Observation Number = 125  Lot_Area DFBETAS = -0.038 
 Observation Number = 124  Lot_Area DFBETAS = -0.029 
 Observation Number = 122  Lot_Area DFBETAS = 0.0215 
 Observation Number = 121  Lot_Area DFBETAS = 0.0023 
 Observation Number = 120  Lot_Area DFBETAS = -0.062 
 Observation Number = 119  Lot_Area DFBETAS = .00088 
 Observation Number = 118  Lot_Area DFBETAS = 0.0011 
 Observation Number = 117  Lot_Area DFBETAS = -79E-5 
 Observation Number = 116  Lot_Area DFBETAS = 0.1141 
 Observation Number = 115  Lot_Area DFBETAS = -0.093 
 Observation Number = 114  Lot_Area DFBETAS = 0.0061 
 Observation Number = 113  Lot_Area DFBETAS = 0.0242 
 Observation Number = 112  Lot_Area DFBETAS = 0.0097 
 Observation Number = 111  Lot_Area DFBETAS = -0.042 
 Observation Number = 109  Lot_Area DFBETAS = 0.0232 
 Observation Number = 108  Lot_Area DFBETAS = 0.0475 
 Observation Number = 107  Lot_Area DFBETAS = -0.052 
 Observation Number = 106  Lot_Area DFBETAS = -0.003 
 Observation Number = 105  Lot_Area DFBETAS = 0.0027 
 Observation Number = 104  Lot_Area DFBETAS = -0.045 
 Observation Number = 102  Lot_Area DFBETAS = -0.041 
 Observation Number = 101  Lot_Area DFBETAS = 0.0165 
 Observation Number = 100  Lot_Area DFBETAS = 0.0013 
 Observation Number = 99  Lot_Area DFBETAS = -0.032 
 Observation Number = 98  Lot_Area DFBETAS = -0.077 
 Observation Number = 97  Lot_Area DFBETAS = -0.004 
 Observation Number = 96  Lot_Area DFBETAS = 0.0045 
 Observation Number = 95  Lot_Area DFBETAS = -0.011 
 Observation Number = 94  Lot_Area DFBETAS = -0.001 
 Observation Number = 93  Lot_Area DFBETAS = 0.0022 
 Observation Number = 92  Lot_Area DFBETAS = -0.089 
 Observation Number = 91  Lot_Area DFBETAS = 0.0052 
 Observation Number = 90  Lot_Area DFBETAS = -0.039 
 Observation Number = 89  Lot_Area DFBETAS = -0.026 
 Observation Number = 88  Lot_Area DFBETAS = 0.0234 
 Observation Number = 87  Lot_Area DFBETAS = -0.024 
 Observation Number = 86  Lot_Area DFBETAS = -0.005 
 Observation Number = 85  Lot_Area DFBETAS = 0.0549 
 Observation Number = 84  Lot_Area DFBETAS = -0.028 
 Observation Number = 83  Lot_Area DFBETAS = 0.0142 
 Observation Number = 82  Lot_Area DFBETAS = -0.027 
 Observation Number = 81  Lot_Area DFBETAS = -0.056 
 Observation Number = 80  Lot_Area DFBETAS = 0.0143 
 Observation Number = 79  Lot_Area DFBETAS = -0.002 
 Observation Number = 78  Lot_Area DFBETAS = -0.025 
 Observation Number = 77  Lot_Area DFBETAS = 0.063 
 Observation Number = 76  Lot_Area DFBETAS = 0.002 
 Observation Number = 75  Lot_Area DFBETAS = -0.007 
 Observation Number = 74  Lot_Area DFBETAS = -0.005 
 Observation Number = 73  Lot_Area DFBETAS = -0.005 
 Observation Number = 72  Lot_Area DFBETAS = 0.0072 
 Observation Number = 71  Lot_Area DFBETAS = 0.0041 
 Observation Number = 70  Lot_Area DFBETAS = 0.0256 
 Observation Number = 69  Lot_Area DFBETAS = -0.076 
 Observation Number = 68  Lot_Area DFBETAS = 0.0175 
 Observation Number = 67  Lot_Area DFBETAS = 0.0096 
 Observation Number = 66  Lot_Area DFBETAS = 0.0206 
 Observation Number = 65  Lot_Area DFBETAS = 0.0249 
 Observation Number = 64  Lot_Area DFBETAS = -0.007 
 Observation Number = 63  Lot_Area DFBETAS = -0.008 
 Observation Number = 62  Lot_Area DFBETAS = 0.006 
 Observation Number = 61  Lot_Area DFBETAS = 0.0036 
 Observation Number = 60  Lot_Area DFBETAS = -0.032 
 Observation Number = 59  Lot_Area DFBETAS = 0.0621 
 Observation Number = 58  Lot_Area DFBETAS = 0.0204 
 Observation Number = 57  Lot_Area DFBETAS = -0.051 
 Observation Number = 56  Lot_Area DFBETAS = -0.032 
 Observation Number = 55  Lot_Area DFBETAS = -0.026 
 Observation Number = 54  Lot_Area DFBETAS = 0.0116 
 Observation Number = 53  Lot_Area DFBETAS = 0.0454 
 Observation Number = 52  Lot_Area DFBETAS = -0.051 
 Observation Number = 51  Lot_Area DFBETAS = -0.003 
 Observation Number = 50  Lot_Area DFBETAS = 0.0375 
 Observation Number = 49  Lot_Area DFBETAS = 0.0793 
 Observation Number = 47  Lot_Area DFBETAS = -0.005 
 Observation Number = 46  Lot_Area DFBETAS = -0.026 
 Observation Number = 45  Lot_Area DFBETAS = 0.0017 
 Observation Number = 44  Lot_Area DFBETAS = 0.0038 
 Observation Number = 43  Lot_Area DFBETAS = .00062 
 Observation Number = 42  Lot_Area DFBETAS = 0.0056 
 Observation Number = 41  Lot_Area DFBETAS = 0.0114 
 Observation Number = 40  Lot_Area DFBETAS = 0.0304 
 Observation Number = 39  Lot_Area DFBETAS = 0.0657 
 Observation Number = 37  Lot_Area DFBETAS = -0.004 
 Observation Number = 36  Lot_Area DFBETAS = -0.004 
 Observation Number = 35  Lot_Area DFBETAS = -0.006 
 Observation Number = 34  Lot_Area DFBETAS = 0.0685 
 Observation Number = 33  Lot_Area DFBETAS = -0.017 
 Observation Number = 32  Lot_Area DFBETAS = 0.0017 
 Observation Number = 31  Lot_Area DFBETAS = -0.002 
 Observation Number = 30  Lot_Area DFBETAS = 0.0297 
 Observation Number = 29  Lot_Area DFBETAS = -0.009 
 Observation Number = 28  Lot_Area DFBETAS = -0.068 
 Observation Number = 27  Lot_Area DFBETAS = 0.0177 
 Observation Number = 26  Lot_Area DFBETAS = 0.0428 
 Observation Number = 25  Lot_Area DFBETAS = -82E-5 
 Observation Number = 24  Lot_Area DFBETAS = -0.028 
 Observation Number = 23  Lot_Area DFBETAS = -0.04 
 Observation Number = 22  Lot_Area DFBETAS = -0.025 
 Observation Number = 21  Lot_Area DFBETAS = 0.0025 
 Observation Number = 20  Lot_Area DFBETAS = 0.0023 
 Observation Number = 19  Lot_Area DFBETAS = 0.0332 
 Observation Number = 18  Lot_Area DFBETAS = -0.004 
 Observation Number = 17  Lot_Area DFBETAS = -0.03 
 Observation Number = 16  Lot_Area DFBETAS = -0.006 
 Observation Number = 15  Lot_Area DFBETAS = 0.0347 
 Observation Number = 14  Lot_Area DFBETAS = 0.11 
 Observation Number = 13  Lot_Area DFBETAS = 0.0078 
 Observation Number = 12  Lot_Area DFBETAS = 0.0026 
 Observation Number = 11  Lot_Area DFBETAS = 0.0033 
 Observation Number = 10  Lot_Area DFBETAS = .00021 
 Observation Number = 8  Lot_Area DFBETAS = -22E-5 
 Observation Number = 6  Lot_Area DFBETAS = 0.0123 
 Observation Number = 5  Lot_Area DFBETAS = 0.0508 
 Observation Number = 4  Lot_Area DFBETAS = 0.0378 
 Observation Number = 3  Lot_Area DFBETAS = -0.045 
 Observation Number = 2
 Y = -0.115  Y = 0.1155  Age_Sold DFBETAS = -0.133 
 Observation Number = 298  Age_Sold DFBETAS = -0.12 
 Observation Number = 294  Age_Sold DFBETAS = -0.167 
 Observation Number = 278  Age_Sold DFBETAS = 0.1174 
 Observation Number = 273  Age_Sold DFBETAS = -0.175 
 Observation Number = 238  Age_Sold DFBETAS = 0.1313 
 Observation Number = 231  Age_Sold DFBETAS = -0.161 
 Observation Number = 227  Age_Sold DFBETAS = -0.19 
 Observation Number = 218  Age_Sold DFBETAS = -0.141 
 Observation Number = 213  Age_Sold DFBETAS = 0.1208 
 Observation Number = 169  Age_Sold DFBETAS = -0.122 
 Observation Number = 168  Age_Sold DFBETAS = 0.1806 
 Observation Number = 166  Age_Sold DFBETAS = 0.2053 
 Observation Number = 151  Age_Sold DFBETAS = 0.117 
 Observation Number = 102  Age_Sold DFBETAS = 0.2113 
 Observation Number = 101  Age_Sold DFBETAS = -0.16 
 Observation Number = 54  Age_Sold DFBETAS = -0.122 
 Observation Number = 52  Age_Sold DFBETAS = 0.2538 
 Observation Number = 22  Age_Sold DFBETAS = -0.131 
 Observation Number = 21  Age_Sold DFBETAS = -0.156 
 Observation Number = 5  Age_Sold DFBETAS = -0.133 
 Observation Number = 298  Age_Sold DFBETAS = -0.12 
 Observation Number = 294  Age_Sold DFBETAS = -0.167 
 Observation Number = 278  Age_Sold DFBETAS = 0.1174 
 Observation Number = 273  Age_Sold DFBETAS = -0.175 
 Observation Number = 238  Age_Sold DFBETAS = 0.1313 
 Observation Number = 231  Age_Sold DFBETAS = -0.161 
 Observation Number = 227  Age_Sold DFBETAS = -0.19 
 Observation Number = 218  Age_Sold DFBETAS = -0.141 
 Observation Number = 213  Age_Sold DFBETAS = 0.1208 
 Observation Number = 169  Age_Sold DFBETAS = -0.122 
 Observation Number = 168  Age_Sold DFBETAS = 0.1806 
 Observation Number = 166  Age_Sold DFBETAS = 0.2053 
 Observation Number = 151  Age_Sold DFBETAS = 0.117 
 Observation Number = 102  Age_Sold DFBETAS = 0.2113 
 Observation Number = 101  Age_Sold DFBETAS = -0.16 
 Observation Number = 54  Age_Sold DFBETAS = -0.122 
 Observation Number = 52  Age_Sold DFBETAS = 0.2538 
 Observation Number = 22  Age_Sold DFBETAS = -0.131 
 Observation Number = 21  Age_Sold DFBETAS = -0.156 
 Observation Number = 5  Age_Sold DFBETAS = 0.0246 
 Observation Number = 300  Age_Sold DFBETAS = 0.0901 
 Observation Number = 299  Age_Sold DFBETAS = 0.0073 
 Observation Number = 297  Age_Sold DFBETAS = 0.0778 
 Observation Number = 296  Age_Sold DFBETAS = -0.004 
 Observation Number = 295  Age_Sold DFBETAS = 0.1085 
 Observation Number = 293  Age_Sold DFBETAS = -0.077 
 Observation Number = 292  Age_Sold DFBETAS = -0.012 
 Observation Number = 291  Age_Sold DFBETAS = -0.028 
 Observation Number = 290  Age_Sold DFBETAS = 0.0072 
 Observation Number = 289  Age_Sold DFBETAS = -0.007 
 Observation Number = 288  Age_Sold DFBETAS = -38E-5 
 Observation Number = 287  Age_Sold DFBETAS = -0.015 
 Observation Number = 286  Age_Sold DFBETAS = -0.005 
 Observation Number = 285  Age_Sold DFBETAS = -0.098 
 Observation Number = 284  Age_Sold DFBETAS = -0.037 
 Observation Number = 283  Age_Sold DFBETAS = 0.0387 
 Observation Number = 282  Age_Sold DFBETAS = -0.021 
 Observation Number = 281  Age_Sold DFBETAS = -0.069 
 Observation Number = 280  Age_Sold DFBETAS = -69E-5 
 Observation Number = 279  Age_Sold DFBETAS = -0.013 
 Observation Number = 277  Age_Sold DFBETAS = 0.0246 
 Observation Number = 276  Age_Sold DFBETAS = -0.018 
 Observation Number = 275  Age_Sold DFBETAS = 0.0492 
 Observation Number = 274  Age_Sold DFBETAS = 0.0058 
 Observation Number = 272  Age_Sold DFBETAS = -0.002 
 Observation Number = 271  Age_Sold DFBETAS = .00087 
 Observation Number = 270  Age_Sold DFBETAS = 0.0103 
 Observation Number = 269  Age_Sold DFBETAS = -0.008 
 Observation Number = 268  Age_Sold DFBETAS = 0.0014 
 Observation Number = 267  Age_Sold DFBETAS = -0.012 
 Observation Number = 266  Age_Sold DFBETAS = -0.064 
 Observation Number = 265  Age_Sold DFBETAS = -62E-5 
 Observation Number = 264  Age_Sold DFBETAS = 0.0028 
 Observation Number = 263  Age_Sold DFBETAS = 0.0222 
 Observation Number = 262  Age_Sold DFBETAS = -0.004 
 Observation Number = 261  Age_Sold DFBETAS = 0.004 
 Observation Number = 260  Age_Sold DFBETAS = -0.003 
 Observation Number = 259  Age_Sold DFBETAS = 0.0683 
 Observation Number = 258  Age_Sold DFBETAS = 0.0094 
 Observation Number = 257  Age_Sold DFBETAS = -0.014 
 Observation Number = 256  Age_Sold DFBETAS = .00042 
 Observation Number = 255  Age_Sold DFBETAS = -0.066 
 Observation Number = 254  Age_Sold DFBETAS = -0.005 
 Observation Number = 253  Age_Sold DFBETAS = 0.0575 
 Observation Number = 252  Age_Sold DFBETAS = 0.0271 
 Observation Number = 251  Age_Sold DFBETAS = 0.0377 
 Observation Number = 250  Age_Sold DFBETAS = 0.0408 
 Observation Number = 249  Age_Sold DFBETAS = -0.007 
 Observation Number = 248  Age_Sold DFBETAS = -0.009 
 Observation Number = 247  Age_Sold DFBETAS = 0.0121 
 Observation Number = 246  Age_Sold DFBETAS = 0.0174 
 Observation Number = 245  Age_Sold DFBETAS = -0.014 
 Observation Number = 244  Age_Sold DFBETAS = -0.007 
 Observation Number = 243  Age_Sold DFBETAS = 0.104 
 Observation Number = 242  Age_Sold DFBETAS = 0.0586 
 Observation Number = 241  Age_Sold DFBETAS = -0.028 
 Observation Number = 240  Age_Sold DFBETAS = 0.0421 
 Observation Number = 239  Age_Sold DFBETAS = 0.0269 
 Observation Number = 237  Age_Sold DFBETAS = 0.039 
 Observation Number = 236  Age_Sold DFBETAS = 0.0483 
 Observation Number = 235  Age_Sold DFBETAS = -0.022 
 Observation Number = 234  Age_Sold DFBETAS = -0.044 
 Observation Number = 233  Age_Sold DFBETAS = 0.0321 
 Observation Number = 232  Age_Sold DFBETAS = 0.0708 
 Observation Number = 230  Age_Sold DFBETAS = 0.0204 
 Observation Number = 229  Age_Sold DFBETAS = 0.0082 
 Observation Number = 228  Age_Sold DFBETAS = 0.0595 
 Observation Number = 226  Age_Sold DFBETAS = -0.019 
 Observation Number = 225  Age_Sold DFBETAS = -0.03 
 Observation Number = 224  Age_Sold DFBETAS = 0.0193 
 Observation Number = 223  Age_Sold DFBETAS = -0.005 
 Observation Number = 222  Age_Sold DFBETAS = 0.0155 
 Observation Number = 221  Age_Sold DFBETAS = -0.001 
 Observation Number = 220  Age_Sold DFBETAS = 0.0488 
 Observation Number = 219  Age_Sold DFBETAS = 0.0019 
 Observation Number = 217  Age_Sold DFBETAS = -0.007 
 Observation Number = 216  Age_Sold DFBETAS = 0.0044 
 Observation Number = 215  Age_Sold DFBETAS = 0.0152 
 Observation Number = 214  Age_Sold DFBETAS = 0.0149 
 Observation Number = 212  Age_Sold DFBETAS = 0.1 
 Observation Number = 211  Age_Sold DFBETAS = 0.0687 
 Observation Number = 210  Age_Sold DFBETAS = -0.034 
 Observation Number = 209  Age_Sold DFBETAS = 0.0197 
 Observation Number = 208  Age_Sold DFBETAS = 0.0185 
 Observation Number = 207  Age_Sold DFBETAS = -0.018 
 Observation Number = 206  Age_Sold DFBETAS = -0.028 
 Observation Number = 205  Age_Sold DFBETAS = -0.012 
 Observation Number = 204  Age_Sold DFBETAS = -0.109 
 Observation Number = 203  Age_Sold DFBETAS = -0.002 
 Observation Number = 202  Age_Sold DFBETAS = 0.0214 
 Observation Number = 201  Age_Sold DFBETAS = 0.0318 
 Observation Number = 200  Age_Sold DFBETAS = 0.004 
 Observation Number = 199  Age_Sold DFBETAS = -0.003 
 Observation Number = 198  Age_Sold DFBETAS = -0.044 
 Observation Number = 197  Age_Sold DFBETAS = 0.003 
 Observation Number = 196  Age_Sold DFBETAS = -0.012 
 Observation Number = 195  Age_Sold DFBETAS = -0.001 
 Observation Number = 194  Age_Sold DFBETAS = 0.0012 
 Observation Number = 193  Age_Sold DFBETAS = 0.0015 
 Observation Number = 192  Age_Sold DFBETAS = 0.0049 
 Observation Number = 191  Age_Sold DFBETAS = 0.0033 
 Observation Number = 190  Age_Sold DFBETAS = 0.0098 
 Observation Number = 189  Age_Sold DFBETAS = -0.003 
 Observation Number = 188  Age_Sold DFBETAS = 0.006 
 Observation Number = 187  Age_Sold DFBETAS = 0.007 
 Observation Number = 186  Age_Sold DFBETAS = 0.0509 
 Observation Number = 185  Age_Sold DFBETAS = 0.0136 
 Observation Number = 184  Age_Sold DFBETAS = -0.009 
 Observation Number = 183  Age_Sold DFBETAS = 0.0219 
 Observation Number = 182  Age_Sold DFBETAS = -0.004 
 Observation Number = 181  Age_Sold DFBETAS = -0.029 
 Observation Number = 180  Age_Sold DFBETAS = -0.057 
 Observation Number = 179  Age_Sold DFBETAS = -0.043 
 Observation Number = 178  Age_Sold DFBETAS = 0.0203 
 Observation Number = 177  Age_Sold DFBETAS = -0.001 
 Observation Number = 176  Age_Sold DFBETAS = -0.023 
 Observation Number = 175  Age_Sold DFBETAS = -0.087 
 Observation Number = 174  Age_Sold DFBETAS = 0.0518 
 Observation Number = 173  Age_Sold DFBETAS = -0.014 
 Observation Number = 172  Age_Sold DFBETAS = 0.0194 
 Observation Number = 171  Age_Sold DFBETAS = .00056 
 Observation Number = 170  Age_Sold DFBETAS = 0.0645 
 Observation Number = 167  Age_Sold DFBETAS = 0.0358 
 Observation Number = 165  Age_Sold DFBETAS = .00084 
 Observation Number = 164  Age_Sold DFBETAS = 0.008 
 Observation Number = 163  Age_Sold DFBETAS = -0.008 
 Observation Number = 162  Age_Sold DFBETAS = 0.0163 
 Observation Number = 161  Age_Sold DFBETAS = 0.032 
 Observation Number = 160  Age_Sold DFBETAS = -0.012 
 Observation Number = 159  Age_Sold DFBETAS = -0.03 
 Observation Number = 158  Age_Sold DFBETAS = -0.012 
 Observation Number = 157  Age_Sold DFBETAS = -0.061 
 Observation Number = 156  Age_Sold DFBETAS = 0.0086 
 Observation Number = 155  Age_Sold DFBETAS = 0.0582 
 Observation Number = 154  Age_Sold DFBETAS = 0.0223 
 Observation Number = 153  Age_Sold DFBETAS = 0.007 
 Observation Number = 152  Age_Sold DFBETAS = 0.0027 
 Observation Number = 150  Age_Sold DFBETAS = -0.016 
 Observation Number = 149  Age_Sold DFBETAS = 0.0816 
 Observation Number = 148  Age_Sold DFBETAS = -0.052 
 Observation Number = 147  Age_Sold DFBETAS = -0.021 
 Observation Number = 146  Age_Sold DFBETAS = -0.008 
 Observation Number = 145  Age_Sold DFBETAS = 0.034 
 Observation Number = 144  Age_Sold DFBETAS = -0.003 
 Observation Number = 143  Age_Sold DFBETAS = 0.0214 
 Observation Number = 142  Age_Sold DFBETAS = -89E-5 
 Observation Number = 141  Age_Sold DFBETAS = 0.0067 
 Observation Number = 140  Age_Sold DFBETAS = 3.4E-5 
 Observation Number = 139  Age_Sold DFBETAS = 0.0016 
 Observation Number = 138  Age_Sold DFBETAS = 0.0024 
 Observation Number = 137  Age_Sold DFBETAS = 0.0017 
 Observation Number = 136  Age_Sold DFBETAS = 0.0025 
 Observation Number = 135  Age_Sold DFBETAS = -0.007 
 Observation Number = 134  Age_Sold DFBETAS = -0.003 
 Observation Number = 133  Age_Sold DFBETAS = -86E-6 
 Observation Number = 132  Age_Sold DFBETAS = -35E-6 
 Observation Number = 131  Age_Sold DFBETAS = 0.0019 
 Observation Number = 130  Age_Sold DFBETAS = .00097 
 Observation Number = 129  Age_Sold DFBETAS = .00051 
 Observation Number = 128  Age_Sold DFBETAS = -19E-6 
 Observation Number = 127  Age_Sold DFBETAS = 0.0438 
 Observation Number = 126  Age_Sold DFBETAS = .00013 
 Observation Number = 125  Age_Sold DFBETAS = -0.034 
 Observation Number = 124  Age_Sold DFBETAS = -0.111 
 Observation Number = 123  Age_Sold DFBETAS = -0.037 
 Observation Number = 122  Age_Sold DFBETAS = 0.0089 
 Observation Number = 121  Age_Sold DFBETAS = -18E-5 
 Observation Number = 120  Age_Sold DFBETAS = 0.086 
 Observation Number = 119  Age_Sold DFBETAS = -0.021 
 Observation Number = 118  Age_Sold DFBETAS = -0.028 
 Observation Number = 117  Age_Sold DFBETAS = -0.038 
 Observation Number = 116  Age_Sold DFBETAS = 0.0497 
 Observation Number = 115  Age_Sold DFBETAS = 0.0247 
 Observation Number = 114  Age_Sold DFBETAS = -0.004 
 Observation Number = 113  Age_Sold DFBETAS = 0.0094 
 Observation Number = 112  Age_Sold DFBETAS = -0.034 
 Observation Number = 111  Age_Sold DFBETAS = 0.1011 
 Observation Number = 110  Age_Sold DFBETAS = -0.001 
 Observation Number = 109  Age_Sold DFBETAS = -0.03 
 Observation Number = 108  Age_Sold DFBETAS = 0.0336 
 Observation Number = 107  Age_Sold DFBETAS = -0.101 
 Observation Number = 106  Age_Sold DFBETAS = 9.3E-5 
 Observation Number = 105  Age_Sold DFBETAS = 0.0065 
 Observation Number = 104  Age_Sold DFBETAS = 0.0343 
 Observation Number = 103  Age_Sold DFBETAS = 0.0212 
 Observation Number = 100  Age_Sold DFBETAS = -0.006 
 Observation Number = 99  Age_Sold DFBETAS = -0.063 
 Observation Number = 98  Age_Sold DFBETAS = 0.0106 
 Observation Number = 97  Age_Sold DFBETAS = -0.006 
 Observation Number = 96  Age_Sold DFBETAS = -0.027 
 Observation Number = 95  Age_Sold DFBETAS = -77E-5 
 Observation Number = 94  Age_Sold DFBETAS = -0.003 
 Observation Number = 93  Age_Sold DFBETAS = -0.007 
 Observation Number = 92  Age_Sold DFBETAS = 0.043 
 Observation Number = 91  Age_Sold DFBETAS = 0.0058 
 Observation Number = 90  Age_Sold DFBETAS = -0.031 
 Observation Number = 89  Age_Sold DFBETAS = 0.019 
 Observation Number = 88  Age_Sold DFBETAS = -0.015 
 Observation Number = 87  Age_Sold DFBETAS = -0.02 
 Observation Number = 86  Age_Sold DFBETAS = -0.084 
 Observation Number = 85  Age_Sold DFBETAS = -0.095 
 Observation Number = 84  Age_Sold DFBETAS = -81E-5 
 Observation Number = 83  Age_Sold DFBETAS = 0.1057 
 Observation Number = 82  Age_Sold DFBETAS = 0.0467 
 Observation Number = 81  Age_Sold DFBETAS = 0.0536 
 Observation Number = 80  Age_Sold DFBETAS = 0.0626 
 Observation Number = 79  Age_Sold DFBETAS = 0.0034 
 Observation Number = 78  Age_Sold DFBETAS = -0.017 
 Observation Number = 77  Age_Sold DFBETAS = 0.0794 
 Observation Number = 76  Age_Sold DFBETAS = -0.002 
 Observation Number = 75  Age_Sold DFBETAS = 0.002 
 Observation Number = 74  Age_Sold DFBETAS = 0.0312 
 Observation Number = 73  Age_Sold DFBETAS = -0.023 
 Observation Number = 72  Age_Sold DFBETAS = 0.0227 
 Observation Number = 71  Age_Sold DFBETAS = 0.0022 
 Observation Number = 70  Age_Sold DFBETAS = -0.011 
 Observation Number = 69  Age_Sold DFBETAS = -0.007 
 Observation Number = 68  Age_Sold DFBETAS = 0.0211 
 Observation Number = 67  Age_Sold DFBETAS = 0.0017 
 Observation Number = 66  Age_Sold DFBETAS = -0.052 
 Observation Number = 65  Age_Sold DFBETAS = -0.014 
 Observation Number = 64  Age_Sold DFBETAS = -0.002 
 Observation Number = 63  Age_Sold DFBETAS = -0.004 
 Observation Number = 62  Age_Sold DFBETAS = 0.0025 
 Observation Number = 61  Age_Sold DFBETAS = -0.015 
 Observation Number = 60  Age_Sold DFBETAS = 0.0119 
 Observation Number = 59  Age_Sold DFBETAS = 0.0237 
 Observation Number = 58  Age_Sold DFBETAS = 0.0311 
 Observation Number = 57  Age_Sold DFBETAS = 0.0641 
 Observation Number = 56  Age_Sold DFBETAS = 0.0442 
 Observation Number = 55  Age_Sold DFBETAS = -0.109 
 Observation Number = 53  Age_Sold DFBETAS = -0.026 
 Observation Number = 51  Age_Sold DFBETAS = 0.0047 
 Observation Number = 50  Age_Sold DFBETAS = -0.06 
 Observation Number = 49  Age_Sold DFBETAS = 0.0237 
 Observation Number = 48  Age_Sold DFBETAS = 0.0314 
 Observation Number = 47  Age_Sold DFBETAS = -0.004 
 Observation Number = 46  Age_Sold DFBETAS = .00029 
 Observation Number = 45  Age_Sold DFBETAS = -0.002 
 Observation Number = 44  Age_Sold DFBETAS = -0.003 
 Observation Number = 43  Age_Sold DFBETAS = -17E-5 
 Observation Number = 42  Age_Sold DFBETAS = -0.066 
 Observation Number = 41  Age_Sold DFBETAS = -0.054 
 Observation Number = 40  Age_Sold DFBETAS = -0.011 
 Observation Number = 39  Age_Sold DFBETAS = 0.0124 
 Observation Number = 38  Age_Sold DFBETAS = 0.0071 
 Observation Number = 37  Age_Sold DFBETAS = 0.0598 
 Observation Number = 36  Age_Sold DFBETAS = -74E-5 
 Observation Number = 35  Age_Sold DFBETAS = 0.0572 
 Observation Number = 34  Age_Sold DFBETAS = -0.028 
 Observation Number = 33  Age_Sold DFBETAS = -0.019 
 Observation Number = 32  Age_Sold DFBETAS = 0.0041 
 Observation Number = 31  Age_Sold DFBETAS = -0.004 
 Observation Number = 30  Age_Sold DFBETAS = -0.027 
 Observation Number = 29  Age_Sold DFBETAS = -0.01 
 Observation Number = 28  Age_Sold DFBETAS = -0.087 
 Observation Number = 27  Age_Sold DFBETAS = -0.059 
 Observation Number = 26  Age_Sold DFBETAS = -0.014 
 Observation Number = 25  Age_Sold DFBETAS = -0.029 
 Observation Number = 24  Age_Sold DFBETAS = -0.007 
 Observation Number = 23  Age_Sold DFBETAS = -0.005 
 Observation Number = 20  Age_Sold DFBETAS = -0.003 
 Observation Number = 19  Age_Sold DFBETAS = -0.021 
 Observation Number = 18  Age_Sold DFBETAS = -0.033 
 Observation Number = 17  Age_Sold DFBETAS = 0.0328 
 Observation Number = 16  Age_Sold DFBETAS = 0.0041 
 Observation Number = 15  Age_Sold DFBETAS = 0.0099 
 Observation Number = 14  Age_Sold DFBETAS = -0.002 
 Observation Number = 13  Age_Sold DFBETAS = -0.045 
 Observation Number = 12  Age_Sold DFBETAS = 0.0022 
 Observation Number = 11  Age_Sold DFBETAS = 0.0036 
 Observation Number = 10  Age_Sold DFBETAS = 0.0178 
 Observation Number = 9  Age_Sold DFBETAS = 0.0079 
 Observation Number = 8  Age_Sold DFBETAS = 0.0572 
 Observation Number = 7  Age_Sold DFBETAS = 0.0035 
 Observation Number = 6  Age_Sold DFBETAS = 0.0349 
 Observation Number = 4  Age_Sold DFBETAS = -0.05 
 Observation Number = 3  Age_Sold DFBETAS = -0.008 
 Observation Number = 2  Age_Sold DFBETAS = -0.043 
 Observation Number = 1
 Y = -0.115  Y = 0.1155  Bedroom_AbvGr DFBETAS = 0.1472 
 Observation Number = 294  Bedroom_AbvGr DFBETAS = -0.16 
 Observation Number = 288  Bedroom_AbvGr DFBETAS = -0.186 
 Observation Number = 242  Bedroom_AbvGr DFBETAS = -0.262 
 Observation Number = 240  Bedroom_AbvGr DFBETAS = 0.1881 
 Observation Number = 239  Bedroom_AbvGr DFBETAS = 0.173 
 Observation Number = 227  Bedroom_AbvGr DFBETAS = 0.1916 
 Observation Number = 218  Bedroom_AbvGr DFBETAS = 0.1754 
 Observation Number = 213  Bedroom_AbvGr DFBETAS = -0.331 
 Observation Number = 185  Bedroom_AbvGr DFBETAS = 0.168 
 Observation Number = 173  Bedroom_AbvGr DFBETAS = -0.173 
 Observation Number = 166  Bedroom_AbvGr DFBETAS = -0.454 
 Observation Number = 151  Bedroom_AbvGr DFBETAS = 0.1611 
 Observation Number = 126  Bedroom_AbvGr DFBETAS = -0.338 
 Observation Number = 123  Bedroom_AbvGr DFBETAS = -0.137 
 Observation Number = 114  Bedroom_AbvGr DFBETAS = 0.1672 
 Observation Number = 58  Bedroom_AbvGr DFBETAS = -0.128 
 Observation Number = 39  Bedroom_AbvGr DFBETAS = -0.254 
 Observation Number = 7  Bedroom_AbvGr DFBETAS = 0.1472 
 Observation Number = 294  Bedroom_AbvGr DFBETAS = -0.16 
 Observation Number = 288  Bedroom_AbvGr DFBETAS = -0.186 
 Observation Number = 242  Bedroom_AbvGr DFBETAS = -0.262 
 Observation Number = 240  Bedroom_AbvGr DFBETAS = 0.1881 
 Observation Number = 239  Bedroom_AbvGr DFBETAS = 0.173 
 Observation Number = 227  Bedroom_AbvGr DFBETAS = 0.1916 
 Observation Number = 218  Bedroom_AbvGr DFBETAS = 0.1754 
 Observation Number = 213  Bedroom_AbvGr DFBETAS = -0.331 
 Observation Number = 185  Bedroom_AbvGr DFBETAS = 0.168 
 Observation Number = 173  Bedroom_AbvGr DFBETAS = -0.173 
 Observation Number = 166  Bedroom_AbvGr DFBETAS = -0.454 
 Observation Number = 151  Bedroom_AbvGr DFBETAS = 0.1611 
 Observation Number = 126  Bedroom_AbvGr DFBETAS = -0.338 
 Observation Number = 123  Bedroom_AbvGr DFBETAS = -0.137 
 Observation Number = 114  Bedroom_AbvGr DFBETAS = 0.1672 
 Observation Number = 58  Bedroom_AbvGr DFBETAS = -0.128 
 Observation Number = 39  Bedroom_AbvGr DFBETAS = -0.254 
 Observation Number = 7  Bedroom_AbvGr DFBETAS = 0.003 
 Observation Number = 300  Bedroom_AbvGr DFBETAS = 0.0965 
 Observation Number = 299  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 298  Bedroom_AbvGr DFBETAS = -0.006 
 Observation Number = 297  Bedroom_AbvGr DFBETAS = 0.0224 
 Observation Number = 296  Bedroom_AbvGr DFBETAS = 0.028 
 Observation Number = 295  Bedroom_AbvGr DFBETAS = 0.0247 
 Observation Number = 293  Bedroom_AbvGr DFBETAS = 0.0803 
 Observation Number = 292  Bedroom_AbvGr DFBETAS = 0.0246 
 Observation Number = 291  Bedroom_AbvGr DFBETAS = 0.0065 
 Observation Number = 290  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 289  Bedroom_AbvGr DFBETAS = .00099 
 Observation Number = 287  Bedroom_AbvGr DFBETAS = 0.0653 
 Observation Number = 286  Bedroom_AbvGr DFBETAS = -0.113 
 Observation Number = 285  Bedroom_AbvGr DFBETAS = -0.044 
 Observation Number = 284  Bedroom_AbvGr DFBETAS = 0.0711 
 Observation Number = 283  Bedroom_AbvGr DFBETAS = 0.0049 
 Observation Number = 282  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 281  Bedroom_AbvGr DFBETAS = -0.045 
 Observation Number = 280  Bedroom_AbvGr DFBETAS = -13E-5 
 Observation Number = 279  Bedroom_AbvGr DFBETAS = 0.0191 
 Observation Number = 278  Bedroom_AbvGr DFBETAS = -0.046 
 Observation Number = 277  Bedroom_AbvGr DFBETAS = 0.0496 
 Observation Number = 276  Bedroom_AbvGr DFBETAS = -88E-5 
 Observation Number = 275  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 274  Bedroom_AbvGr DFBETAS = 0.0906 
 Observation Number = 273  Bedroom_AbvGr DFBETAS = -0.037 
 Observation Number = 272  Bedroom_AbvGr DFBETAS = 0.0036 
 Observation Number = 271  Bedroom_AbvGr DFBETAS = 0.0113 
 Observation Number = 270  Bedroom_AbvGr DFBETAS = 0.0191 
 Observation Number = 269  Bedroom_AbvGr DFBETAS = -0.017 
 Observation Number = 268  Bedroom_AbvGr DFBETAS = -0.013 
 Observation Number = 267  Bedroom_AbvGr DFBETAS = 0.032 
 Observation Number = 266  Bedroom_AbvGr DFBETAS = -0.032 
 Observation Number = 265  Bedroom_AbvGr DFBETAS = 0.0043 
 Observation Number = 264  Bedroom_AbvGr DFBETAS = -0.034 
 Observation Number = 263  Bedroom_AbvGr DFBETAS = -0.058 
 Observation Number = 262  Bedroom_AbvGr DFBETAS = -0.028 
 Observation Number = 261  Bedroom_AbvGr DFBETAS = 0.0954 
 Observation Number = 260  Bedroom_AbvGr DFBETAS = 0.0261 
 Observation Number = 259  Bedroom_AbvGr DFBETAS = 0.015 
 Observation Number = 258  Bedroom_AbvGr DFBETAS = 0.0273 
 Observation Number = 257  Bedroom_AbvGr DFBETAS = 0.0294 
 Observation Number = 256  Bedroom_AbvGr DFBETAS = -87E-5 
 Observation Number = 255  Bedroom_AbvGr DFBETAS = 0.0652 
 Observation Number = 254  Bedroom_AbvGr DFBETAS = 0.0012 
 Observation Number = 253  Bedroom_AbvGr DFBETAS = 0.0042 
 Observation Number = 252  Bedroom_AbvGr DFBETAS = -0.036 
 Observation Number = 251  Bedroom_AbvGr DFBETAS = -0.083 
 Observation Number = 250  Bedroom_AbvGr DFBETAS = 0.0787 
 Observation Number = 249  Bedroom_AbvGr DFBETAS = 0.0183 
 Observation Number = 248  Bedroom_AbvGr DFBETAS = -0.02 
 Observation Number = 247  Bedroom_AbvGr DFBETAS = -0.04 
 Observation Number = 246  Bedroom_AbvGr DFBETAS = -0.018 
 Observation Number = 245  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 244  Bedroom_AbvGr DFBETAS = 0.0576 
 Observation Number = 243  Bedroom_AbvGr DFBETAS = -0.053 
 Observation Number = 241  Bedroom_AbvGr DFBETAS = 0.1002 
 Observation Number = 238  Bedroom_AbvGr DFBETAS = 0.0265 
 Observation Number = 237  Bedroom_AbvGr DFBETAS = -0.07 
 Observation Number = 236  Bedroom_AbvGr DFBETAS = -0.019 
 Observation Number = 235  Bedroom_AbvGr DFBETAS = -0.028 
 Observation Number = 234  Bedroom_AbvGr DFBETAS = -0.09 
 Observation Number = 233  Bedroom_AbvGr DFBETAS = -0.023 
 Observation Number = 232  Bedroom_AbvGr DFBETAS = 0.0208 
 Observation Number = 231  Bedroom_AbvGr DFBETAS = .00061 
 Observation Number = 230  Bedroom_AbvGr DFBETAS = -0.012 
 Observation Number = 229  Bedroom_AbvGr DFBETAS = -0.07 
 Observation Number = 228  Bedroom_AbvGr DFBETAS = 0.0623 
 Observation Number = 226  Bedroom_AbvGr DFBETAS = 0.0711 
 Observation Number = 225  Bedroom_AbvGr DFBETAS = 0.0578 
 Observation Number = 224  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 223  Bedroom_AbvGr DFBETAS = 0.002 
 Observation Number = 222  Bedroom_AbvGr DFBETAS = -0.011 
 Observation Number = 221  Bedroom_AbvGr DFBETAS = -0.048 
 Observation Number = 220  Bedroom_AbvGr DFBETAS = -0.042 
 Observation Number = 219  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 217  Bedroom_AbvGr DFBETAS = 0.0657 
 Observation Number = 216  Bedroom_AbvGr DFBETAS = -0.028 
 Observation Number = 215  Bedroom_AbvGr DFBETAS = 0.0546 
 Observation Number = 214  Bedroom_AbvGr DFBETAS = 0.0084 
 Observation Number = 212  Bedroom_AbvGr DFBETAS = 0.0813 
 Observation Number = 211  Bedroom_AbvGr DFBETAS = 0.0148 
 Observation Number = 210  Bedroom_AbvGr DFBETAS = 0.0163 
 Observation Number = 209  Bedroom_AbvGr DFBETAS = 0.0145 
 Observation Number = 208  Bedroom_AbvGr DFBETAS = 0.0233 
 Observation Number = 207  Bedroom_AbvGr DFBETAS = 0.0128 
 Observation Number = 206  Bedroom_AbvGr DFBETAS = -0.013 
 Observation Number = 205  Bedroom_AbvGr DFBETAS = 0.0068 
 Observation Number = 204  Bedroom_AbvGr DFBETAS = 0.0386 
 Observation Number = 203  Bedroom_AbvGr DFBETAS = -0.014 
 Observation Number = 202  Bedroom_AbvGr DFBETAS = -0.007 
 Observation Number = 201  Bedroom_AbvGr DFBETAS = -0.03 
 Observation Number = 200  Bedroom_AbvGr DFBETAS = -0.001 
 Observation Number = 199  Bedroom_AbvGr DFBETAS = -0.006 
 Observation Number = 198  Bedroom_AbvGr DFBETAS = 0.0557 
 Observation Number = 197  Bedroom_AbvGr DFBETAS = 0.0153 
 Observation Number = 196  Bedroom_AbvGr DFBETAS = 0.0265 
 Observation Number = 195  Bedroom_AbvGr DFBETAS = 0.0132 
 Observation Number = 194  Bedroom_AbvGr DFBETAS = 0.0077 
 Observation Number = 193  Bedroom_AbvGr DFBETAS = 0.0122 
 Observation Number = 192  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 191  Bedroom_AbvGr DFBETAS = 0.0029 
 Observation Number = 190  Bedroom_AbvGr DFBETAS = -0.014 
 Observation Number = 189  Bedroom_AbvGr DFBETAS = -0.013 
 Observation Number = 188  Bedroom_AbvGr DFBETAS = -0.013 
 Observation Number = 187  Bedroom_AbvGr DFBETAS = -0.026 
 Observation Number = 186  Bedroom_AbvGr DFBETAS = 0.007 
 Observation Number = 184  Bedroom_AbvGr DFBETAS = -0.028 
 Observation Number = 183  Bedroom_AbvGr DFBETAS = .00026 
 Observation Number = 182  Bedroom_AbvGr DFBETAS = -49E-5 
 Observation Number = 181  Bedroom_AbvGr DFBETAS = 0.0072 
 Observation Number = 180  Bedroom_AbvGr DFBETAS = 0.0023 
 Observation Number = 179  Bedroom_AbvGr DFBETAS = -0.048 
 Observation Number = 178  Bedroom_AbvGr DFBETAS = -0.033 
 Observation Number = 177  Bedroom_AbvGr DFBETAS = -0.02 
 Observation Number = 176  Bedroom_AbvGr DFBETAS = -0.022 
 Observation Number = 175  Bedroom_AbvGr DFBETAS = 0.008 
 Observation Number = 174  Bedroom_AbvGr DFBETAS = -0.012 
 Observation Number = 172  Bedroom_AbvGr DFBETAS = 0.015 
 Observation Number = 171  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 170  Bedroom_AbvGr DFBETAS = -0.064 
 Observation Number = 169  Bedroom_AbvGr DFBETAS = 0.0737 
 Observation Number = 168  Bedroom_AbvGr DFBETAS = -0.069 
 Observation Number = 167  Bedroom_AbvGr DFBETAS = 0.0401 
 Observation Number = 165  Bedroom_AbvGr DFBETAS = 0.0026 
 Observation Number = 164  Bedroom_AbvGr DFBETAS = 0.0033 
 Observation Number = 163  Bedroom_AbvGr DFBETAS = -0.04 
 Observation Number = 162  Bedroom_AbvGr DFBETAS = 0.0169 
 Observation Number = 161  Bedroom_AbvGr DFBETAS = -0.05 
 Observation Number = 160  Bedroom_AbvGr DFBETAS = 0.0165 
 Observation Number = 159  Bedroom_AbvGr DFBETAS = 0.0864 
 Observation Number = 158  Bedroom_AbvGr DFBETAS = -0.01 
 Observation Number = 157  Bedroom_AbvGr DFBETAS = 0.0076 
 Observation Number = 156  Bedroom_AbvGr DFBETAS = 0.0062 
 Observation Number = 155  Bedroom_AbvGr DFBETAS = 0.0286 
 Observation Number = 154  Bedroom_AbvGr DFBETAS = 0.0321 
 Observation Number = 153  Bedroom_AbvGr DFBETAS = -0.112 
 Observation Number = 152  Bedroom_AbvGr DFBETAS = -0.011 
 Observation Number = 150  Bedroom_AbvGr DFBETAS = 0.063 
 Observation Number = 149  Bedroom_AbvGr DFBETAS = -0.028 
 Observation Number = 148  Bedroom_AbvGr DFBETAS = 0.0307 
 Observation Number = 147  Bedroom_AbvGr DFBETAS = 0.0116 
 Observation Number = 146  Bedroom_AbvGr DFBETAS = 0.008 
 Observation Number = 145  Bedroom_AbvGr DFBETAS = 0.0042 
 Observation Number = 144  Bedroom_AbvGr DFBETAS = -0.016 
 Observation Number = 143  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 142  Bedroom_AbvGr DFBETAS = 0.0114 
 Observation Number = 141  Bedroom_AbvGr DFBETAS = 0.0056 
 Observation Number = 140  Bedroom_AbvGr DFBETAS = -35E-5 
 Observation Number = 139  Bedroom_AbvGr DFBETAS = 0.015 
 Observation Number = 138  Bedroom_AbvGr DFBETAS = 0.0297 
 Observation Number = 137  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 136  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 135  Bedroom_AbvGr DFBETAS = -0.011 
 Observation Number = 134  Bedroom_AbvGr DFBETAS = -0.042 
 Observation Number = 133  Bedroom_AbvGr DFBETAS = -.0005 
 Observation Number = 132  Bedroom_AbvGr DFBETAS = 2.8E-5 
 Observation Number = 131  Bedroom_AbvGr DFBETAS = -39E-5 
 Observation Number = 130  Bedroom_AbvGr DFBETAS = -39E-5 
 Observation Number = 129  Bedroom_AbvGr DFBETAS = -0.018 
 Observation Number = 128  Bedroom_AbvGr DFBETAS = 0.0403 
 Observation Number = 127  Bedroom_AbvGr DFBETAS = .00081 
 Observation Number = 125  Bedroom_AbvGr DFBETAS = -0.015 
 Observation Number = 124  Bedroom_AbvGr DFBETAS = -0.016 
 Observation Number = 122  Bedroom_AbvGr DFBETAS = 0.0125 
 Observation Number = 121  Bedroom_AbvGr DFBETAS = -43E-5 
 Observation Number = 120  Bedroom_AbvGr DFBETAS = -0.005 
 Observation Number = 119  Bedroom_AbvGr DFBETAS = 0.0062 
 Observation Number = 118  Bedroom_AbvGr DFBETAS = 0.0031 
 Observation Number = 117  Bedroom_AbvGr DFBETAS = -0.049 
 Observation Number = 116  Bedroom_AbvGr DFBETAS = 0.013 
 Observation Number = 115  Bedroom_AbvGr DFBETAS = 0.0134 
 Observation Number = 113  Bedroom_AbvGr DFBETAS = 0.0225 
 Observation Number = 112  Bedroom_AbvGr DFBETAS = 0.0222 
 Observation Number = 111  Bedroom_AbvGr DFBETAS = -0.034 
 Observation Number = 110  Bedroom_AbvGr DFBETAS = 0.0107 
 Observation Number = 109  Bedroom_AbvGr DFBETAS = 0.0656 
 Observation Number = 108  Bedroom_AbvGr DFBETAS = 0.0213 
 Observation Number = 107  Bedroom_AbvGr DFBETAS = -0.115 
 Observation Number = 106  Bedroom_AbvGr DFBETAS = -19E-5 
 Observation Number = 105  Bedroom_AbvGr DFBETAS = -0.001 
 Observation Number = 104  Bedroom_AbvGr DFBETAS = -0.017 
 Observation Number = 103  Bedroom_AbvGr DFBETAS = 0.0589 
 Observation Number = 102  Bedroom_AbvGr DFBETAS = 0.0311 
 Observation Number = 101  Bedroom_AbvGr DFBETAS = -0.022 
 Observation Number = 100  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 99  Bedroom_AbvGr DFBETAS = -0.01 
 Observation Number = 98  Bedroom_AbvGr DFBETAS = 0.0319 
 Observation Number = 97  Bedroom_AbvGr DFBETAS = -67E-5 
 Observation Number = 96  Bedroom_AbvGr DFBETAS = 0.0146 
 Observation Number = 95  Bedroom_AbvGr DFBETAS = 0.0117 
 Observation Number = 94  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 93  Bedroom_AbvGr DFBETAS = 0.0013 
 Observation Number = 92  Bedroom_AbvGr DFBETAS = 0.0168 
 Observation Number = 91  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 90  Bedroom_AbvGr DFBETAS = 0.0927 
 Observation Number = 89  Bedroom_AbvGr DFBETAS = -0.027 
 Observation Number = 88  Bedroom_AbvGr DFBETAS = -0.046 
 Observation Number = 87  Bedroom_AbvGr DFBETAS = 0.0508 
 Observation Number = 86  Bedroom_AbvGr DFBETAS = 0.113 
 Observation Number = 85  Bedroom_AbvGr DFBETAS = -0.015 
 Observation Number = 84  Bedroom_AbvGr DFBETAS = 0.107 
 Observation Number = 83  Bedroom_AbvGr DFBETAS = -0.047 
 Observation Number = 82  Bedroom_AbvGr DFBETAS = 0.0043 
 Observation Number = 81  Bedroom_AbvGr DFBETAS = 0.0177 
 Observation Number = 80  Bedroom_AbvGr DFBETAS = -0.017 
 Observation Number = 79  Bedroom_AbvGr DFBETAS = -76E-5 
 Observation Number = 78  Bedroom_AbvGr DFBETAS = 0.0997 
 Observation Number = 77  Bedroom_AbvGr DFBETAS = -0.066 
 Observation Number = 76  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 75  Bedroom_AbvGr DFBETAS = 0.0113 
 Observation Number = 74  Bedroom_AbvGr DFBETAS = -0.027 
 Observation Number = 73  Bedroom_AbvGr DFBETAS = -0.006 
 Observation Number = 72  Bedroom_AbvGr DFBETAS = -0.005 
 Observation Number = 71  Bedroom_AbvGr DFBETAS = -0.007 
 Observation Number = 70  Bedroom_AbvGr DFBETAS = -0.006 
 Observation Number = 69  Bedroom_AbvGr DFBETAS = 0.0717 
 Observation Number = 68  Bedroom_AbvGr DFBETAS = -0.016 
 Observation Number = 67  Bedroom_AbvGr DFBETAS = 0.0034 
 Observation Number = 66  Bedroom_AbvGr DFBETAS = -0.02 
 Observation Number = 65  Bedroom_AbvGr DFBETAS = -0.026 
 Observation Number = 64  Bedroom_AbvGr DFBETAS = 0.0055 
 Observation Number = 63  Bedroom_AbvGr DFBETAS = 0.009 
 Observation Number = 62  Bedroom_AbvGr DFBETAS = 0.0081 
 Observation Number = 61  Bedroom_AbvGr DFBETAS = -0.011 
 Observation Number = 60  Bedroom_AbvGr DFBETAS = -0.008 
 Observation Number = 59  Bedroom_AbvGr DFBETAS = -0.022 
 Observation Number = 57  Bedroom_AbvGr DFBETAS = -0.038 
 Observation Number = 56  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 55  Bedroom_AbvGr DFBETAS = 0.0727 
 Observation Number = 54  Bedroom_AbvGr DFBETAS = 0.0088 
 Observation Number = 53  Bedroom_AbvGr DFBETAS = 0.0096 
 Observation Number = 52  Bedroom_AbvGr DFBETAS = -0.029 
 Observation Number = 51  Bedroom_AbvGr DFBETAS = .00065 
 Observation Number = 50  Bedroom_AbvGr DFBETAS = -0.072 
 Observation Number = 49  Bedroom_AbvGr DFBETAS = -0.049 
 Observation Number = 48  Bedroom_AbvGr DFBETAS = 0.0079 
 Observation Number = 47  Bedroom_AbvGr DFBETAS = 0.0263 
 Observation Number = 46  Bedroom_AbvGr DFBETAS = 0.0733 
 Observation Number = 45  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 44  Bedroom_AbvGr DFBETAS = 0.001 
 Observation Number = 43  Bedroom_AbvGr DFBETAS = .00066 
 Observation Number = 42  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 41  Bedroom_AbvGr DFBETAS = 0.0066 
 Observation Number = 40  Bedroom_AbvGr DFBETAS = 0.0106 
 Observation Number = 38  Bedroom_AbvGr DFBETAS = -0.007 
 Observation Number = 37  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 36  Bedroom_AbvGr DFBETAS = 0.0414 
 Observation Number = 35  Bedroom_AbvGr DFBETAS = -0.007 
 Observation Number = 34  Bedroom_AbvGr DFBETAS = 0.0119 
 Observation Number = 33  Bedroom_AbvGr DFBETAS = 0.0076 
 Observation Number = 32  Bedroom_AbvGr DFBETAS = 0.0045 
 Observation Number = 31  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 30  Bedroom_AbvGr DFBETAS = -0.012 
 Observation Number = 29  Bedroom_AbvGr DFBETAS = 0.0628 
 Observation Number = 28  Bedroom_AbvGr DFBETAS = -0.051 
 Observation Number = 27  Bedroom_AbvGr DFBETAS = 0.026 
 Observation Number = 26  Bedroom_AbvGr DFBETAS = -0.014 
 Observation Number = 25  Bedroom_AbvGr DFBETAS = 0.0865 
 Observation Number = 24  Bedroom_AbvGr DFBETAS = 0.1038 
 Observation Number = 23  Bedroom_AbvGr DFBETAS = -0.104 
 Observation Number = 22  Bedroom_AbvGr DFBETAS = 0.0581 
 Observation Number = 21  Bedroom_AbvGr DFBETAS = .00035 
 Observation Number = 20  Bedroom_AbvGr DFBETAS = -0.001 
 Observation Number = 19  Bedroom_AbvGr DFBETAS = -0.003 
 Observation Number = 18  Bedroom_AbvGr DFBETAS = 0.0244 
 Observation Number = 17  Bedroom_AbvGr DFBETAS = 0.0605 
 Observation Number = 16  Bedroom_AbvGr DFBETAS = 0.0055 
 Observation Number = 15  Bedroom_AbvGr DFBETAS = -0.037 
 Observation Number = 14  Bedroom_AbvGr DFBETAS = -0.099 
 Observation Number = 13  Bedroom_AbvGr DFBETAS = 0.0957 
 Observation Number = 12  Bedroom_AbvGr DFBETAS = 0.0056 
 Observation Number = 11  Bedroom_AbvGr DFBETAS = -0.004 
 Observation Number = 10  Bedroom_AbvGr DFBETAS = 0.0485 
 Observation Number = 9  Bedroom_AbvGr DFBETAS = 0.0093 
 Observation Number = 8  Bedroom_AbvGr DFBETAS = -0.002 
 Observation Number = 6  Bedroom_AbvGr DFBETAS = 0.0314 
 Observation Number = 5  Bedroom_AbvGr DFBETAS = 0.0085 
 Observation Number = 4  Bedroom_AbvGr DFBETAS = 0.0366 
 Observation Number = 3  Bedroom_AbvGr DFBETAS = -0.03 
 Observation Number = 2  Bedroom_AbvGr DFBETAS = -0.113 
 Observation Number = 1

Now let’s look at the Dffits data set. We see DFFITS influence statistics in the DFFITS column. But notice that for some observations like 7, 21, and 22 there are missing values in the DFFITS column. For observations that are flagged as influential by DFFITS, the statistics are in the DFFITSOUT column rather than the DFFITS column. Because the DFFITS values are not all in the same column, if we want to change the cutoff or ask questions about the DFFITS values we’ll have to do a little extra work.

Go back to the DFBETAS panel plot. Here we see the order of the variables in the _GLSIND macro: above grade living area, basement area, garage area, deck/porch area, lot area, age sold, and bedroom above grade. So in the Dfbs data set, _DFBETAS1 and _DFBETASOUT1 are for the intercept, _DFBETAS2 and _DFBETASOUT2 are for above grade living area, _DFBETAS3 and _DFBETASOUT3 are for basement area, and so forth, ending with _DFBETAS8 and _DFBETASOUT8 for the last predictor variable, bedroom above grade.


In [18]:
/* Before running the code below,*/
 /* run the code from the previous demo, 
 /* Looking for Influential Observations, Part 1.*/
 /* Run both programs in the same SAS session.*/

title;

/*Check outLevlabel column*/
proc print data=Rstud noobs;
run;
/*Check CooksDLabel column*/
proc print data=Cook noobs;
run;
/*Check DFFITSOUT column*/
proc print data=Dffits noobs;
run;


Out[18]:
SAS Output
Model Dependent RStudent PredictedValue outLevLabel Observation
SigLimit SalePrice 1.73092 185283.46 . 1
SigLimit SalePrice 0.67964 180284.34 . 2
SigLimit SalePrice 0.63948 104541.46 . 3
SigLimit SalePrice -0.58261 169597.56 . 4
SigLimit SalePrice 1.32153 158490.53 . 5
SigLimit SalePrice -0.05738 125932.40 . 6
SigLimit SalePrice 1.92473 174736.56 . 7
SigLimit SalePrice 0.36232 153008.35 . 8
SigLimit SalePrice 1.47568 156222.61 . 9
SigLimit SalePrice 0.10202 140446.83 . 10
SigLimit SalePrice 0.15571 125421.52 . 11
SigLimit SalePrice -1.12570 150512.33 . 12
SigLimit SalePrice 1.65684 150725.00 . 13
SigLimit SalePrice 0.54343 126013.31 . 14
SigLimit SalePrice 0.15339 151460.95 . 15
SigLimit SalePrice 0.55394 125741.85 . 16
SigLimit SalePrice -0.56164 200736.13 17 17
SigLimit SalePrice -0.64482 90640.01 . 18
SigLimit SalePrice -0.06749 120117.08 . 19
SigLimit SalePrice -0.05783 124845.09 . 20
SigLimit SalePrice -1.47822 123941.30 . 21
SigLimit SalePrice 1.40038 71388.82 22 22
SigLimit SalePrice 1.24923 117326.83 . 23
SigLimit SalePrice 0.62756 147826.80 . 24
SigLimit SalePrice -0.82201 173773.56 . 25
SigLimit SalePrice 0.65376 175204.37 . 26
SigLimit SalePrice -3.10785 164685.93 27 27
SigLimit SalePrice 1.15239 135960.27 . 28
SigLimit SalePrice 0.46690 151302.69 . 29
SigLimit SalePrice 0.05430 142857.51 . 30
SigLimit SalePrice -0.05717 143939.38 . 31
SigLimit SalePrice 0.53249 204219.38 . 32
SigLimit SalePrice 1.21513 65033.63 . 33
SigLimit SalePrice 0.81924 112472.69 . 34
SigLimit SalePrice 0.88479 175434.69 . 35
SigLimit SalePrice -1.34524 195539.36 . 36
SigLimit SalePrice -0.67965 130671.07 . 37
SigLimit SalePrice -0.34924 163367.07 38 38
SigLimit SalePrice -1.26343 177720.93 . 39
SigLimit SalePrice 0.48988 160512.06 . 40
SigLimit SalePrice 0.69110 162657.36 . 41
SigLimit SalePrice 0.02297 157619.53 . 42
SigLimit SalePrice 0.23329 161138.75 . 43
SigLimit SalePrice -0.04237 149184.59 44 44
SigLimit SalePrice 0.92723 140684.87 . 45
SigLimit SalePrice 0.29326 119667.47 . 46
SigLimit SalePrice -0.87134 111349.97 . 47
SigLimit SalePrice -1.43170 161436.84 . 48
SigLimit SalePrice 0.92215 197321.91 . 49
SigLimit SalePrice -0.03693 174603.31 . 50
SigLimit SalePrice 0.73981 195329.36 . 51
SigLimit SalePrice 0.87833 152704.98 . 52
SigLimit SalePrice 0.91134 153153.56 . 53
SigLimit SalePrice 2.61467 202411.72 54 54
SigLimit SalePrice -0.28483 146605.77 55 55
SigLimit SalePrice -0.83479 166728.61 . 56
SigLimit SalePrice -0.76002 201523.43 . 57
SigLimit SalePrice -2.28382 182308.15 58 58
SigLimit SalePrice -0.41697 168815.84 . 59
SigLimit SalePrice -0.63315 171983.45 . 60
SigLimit SalePrice 0.24209 149988.70 . 61
SigLimit SalePrice -0.22428 125718.42 . 62
SigLimit SalePrice 0.49808 74323.50 . 63
SigLimit SalePrice -0.81048 123422.00 . 64
SigLimit SalePrice -1.16144 178162.78 . 65
SigLimit SalePrice 0.16913 152203.40 . 66
SigLimit SalePrice 0.85141 98932.30 . 67
SigLimit SalePrice -1.50241 127136.23 68 68
SigLimit SalePrice -0.60947 109979.01 . 69
SigLimit SalePrice -0.33364 64475.20 . 70
SigLimit SalePrice 0.19101 102877.33 . 71
SigLimit SalePrice -0.99242 170397.16 . 72
SigLimit SalePrice 0.92842 128161.51 . 73
SigLimit SalePrice 0.21375 124461.55 . 74
SigLimit SalePrice 0.24757 140906.69 . 75
SigLimit SalePrice 1.43702 105721.23 . 76
SigLimit SalePrice -1.34398 66908.57 . 77
SigLimit SalePrice 0.17456 88421.89 . 78
SigLimit SalePrice 0.83557 85719.01 . 79
SigLimit SalePrice 0.55123 109946.96 . 80
SigLimit SalePrice 0.49446 140904.78 . 81
SigLimit SalePrice 1.03139 104038.07 . 82
SigLimit SalePrice -0.87156 74231.76 . 83
SigLimit SalePrice -1.27186 124528.32 . 84
SigLimit SalePrice 1.60449 123581.90 . 85
SigLimit SalePrice -0.81066 134897.80 . 86
SigLimit SalePrice -0.68608 136292.05 . 87
SigLimit SalePrice -0.30186 88897.19 . 88
SigLimit SalePrice -1.00439 121523.60 . 89
SigLimit SalePrice -0.22594 195715.75 . 90
SigLimit SalePrice -0.72106 198875.24 . 91
SigLimit SalePrice 0.14102 200669.96 . 92
SigLimit SalePrice 0.04231 143304.71 . 93
SigLimit SalePrice -0.26050 112250.97 . 94
SigLimit SalePrice -0.67431 178073.25 . 95
SigLimit SalePrice 0.06182 144484.24 . 96
SigLimit SalePrice -1.10129 99932.63 . 97
SigLimit SalePrice -0.63587 120448.29 . 98
SigLimit SalePrice -0.24039 125983.73 . 99
SigLimit SalePrice 0.32177 54759.40 . 100
SigLimit SalePrice 1.82531 117604.12 . 101
SigLimit SalePrice 1.49890 112487.60 . 102
SigLimit SalePrice -1.14761 133786.21 . 103
SigLimit SalePrice -0.13260 203185.56 . 104
SigLimit SalePrice -0.04210 214188.14 . 105
SigLimit SalePrice 2.12392 185162.46 106 106
SigLimit SalePrice -0.72262 176899.67 . 107
SigLimit SalePrice 0.88737 115360.38 . 108
SigLimit SalePrice -0.59954 169883.79 . 109
SigLimit SalePrice -1.42296 120045.46 . 110
SigLimit SalePrice 0.30137 107081.73 . 111
SigLimit SalePrice -0.42128 186946.19 . 112
SigLimit SalePrice 0.39882 175298.03 . 113
SigLimit SalePrice -1.47492 135303.41 . 114
SigLimit SalePrice -1.27582 110478.54 . 115
SigLimit SalePrice 0.70960 195301.07 . 116
SigLimit SalePrice 0.24412 171989.52 . 117
SigLimit SalePrice 0.14624 138622.04 . 118
SigLimit SalePrice -0.55332 154939.17 119 119
SigLimit SalePrice 0.01238 191798.43 . 120
SigLimit SalePrice -0.26111 200287.17 . 121
SigLimit SalePrice 0.48009 164037.44 . 122
SigLimit SalePrice 5.74803 200551.43 123 123
SigLimit SalePrice 0.43512 152865.66 . 124
SigLimit SalePrice 0.00793 134869.73 . 125
SigLimit SalePrice 2.24768 141717.99 126 126
SigLimit SalePrice 0.99591 129032.85 . 127
SigLimit SalePrice -0.37046 147091.29 . 128
SigLimit SalePrice -0.03805 73125.19 . 129
SigLimit SalePrice -0.68865 63322.35 . 130
SigLimit SalePrice -0.00144 87023.76 . 131
SigLimit SalePrice 0.25233 160821.63 . 132
SigLimit SalePrice -1.12364 142603.97 . 133
SigLimit SalePrice -0.43551 147207.74 . 134
SigLimit SalePrice 0.05095 184163.82 . 135
SigLimit SalePrice 0.07351 128786.87 . 136
SigLimit SalePrice -0.23172 93665.81 . 137
SigLimit SalePrice 0.40930 141227.23 . 138
SigLimit SalePrice -0.00648 126007.23 . 139
SigLimit SalePrice 0.39840 148417.74 . 140
SigLimit SalePrice 0.09693 125905.45 . 141
SigLimit SalePrice 0.29919 123145.41 . 142
SigLimit SalePrice 0.15049 78839.31 . 143
SigLimit SalePrice 0.32033 122748.77 . 144
SigLimit SalePrice -0.11850 70439.83 . 145
SigLimit SalePrice -0.92478 104544.20 . 146
SigLimit SalePrice -1.27441 103166.77 . 147
SigLimit SalePrice 0.78224 122195.41 . 148
SigLimit SalePrice 0.69087 116235.62 . 149
SigLimit SalePrice -0.26820 133938.14 . 150
SigLimit SalePrice 2.59275 193681.17 151 151
SigLimit SalePrice 1.08185 159203.37 . 152
SigLimit SalePrice 0.52059 146409.78 . 153
SigLimit SalePrice -0.72411 111453.07 . 154
SigLimit SalePrice 0.05967 118026.41 . 155
SigLimit SalePrice -0.61318 117496.28 . 156
SigLimit SalePrice -0.61145 135112.44 . 157
SigLimit SalePrice -1.00812 95513.93 . 158
SigLimit SalePrice 0.19793 151735.89 . 159
SigLimit SalePrice -0.68584 121323.11 . 160
SigLimit SalePrice -0.21195 144481.20 . 161
SigLimit SalePrice -1.10805 155767.47 . 162
SigLimit SalePrice -0.29627 96773.80 . 163
SigLimit SalePrice 0.45681 122943.93 . 164
SigLimit SalePrice 0.60217 130144.43 . 165
SigLimit SalePrice 1.44262 144609.35 . 166
SigLimit SalePrice 0.80433 131773.36 . 167
SigLimit SalePrice -2.59767 146278.21 168 168
SigLimit SalePrice 1.61556 99443.79 . 169
SigLimit SalePrice -0.05003 172327.76 . 170
SigLimit SalePrice -0.38911 166925.47 . 171
SigLimit SalePrice -0.24622 177010.68 . 172
SigLimit SalePrice -1.79116 124076.52 . 173
SigLimit SalePrice 0.69574 150148.52 . 174
SigLimit SalePrice 1.04145 152822.66 . 175
SigLimit SalePrice 0.28085 187724.52 . 176
SigLimit SalePrice -0.38792 119875.25 . 177
SigLimit SalePrice 0.77212 194288.73 . 178
SigLimit SalePrice 0.38575 159232.71 . 179
SigLimit SalePrice 0.24326 157997.72 . 180
SigLimit SalePrice 0.06570 213928.57 . 181
SigLimit SalePrice -0.60823 130816.29 . 182
SigLimit SalePrice -0.30941 150081.25 . 183
SigLimit SalePrice 1.79581 188445.42 . 184
SigLimit SalePrice 2.32326 176138.08 185 185
SigLimit SalePrice -0.54100 135961.91 . 186
SigLimit SalePrice -0.56713 152399.35 . 187
SigLimit SalePrice -0.45499 165508.42 . 188
SigLimit SalePrice 0.38980 117543.74 . 189
SigLimit SalePrice -0.07359 40493.35 . 190
SigLimit SalePrice -0.21912 67600.50 . 191
SigLimit SalePrice -0.29716 119416.87 . 192
SigLimit SalePrice 0.10930 137605.85 . 193
SigLimit SalePrice -0.35854 121940.12 . 194
SigLimit SalePrice 0.40428 121814.19 . 195
SigLimit SalePrice 0.22952 115196.57 . 196
SigLimit SalePrice 0.67131 88019.43 . 197
SigLimit SalePrice 0.53258 116673.41 . 198
SigLimit SalePrice 0.03946 99252.55 . 199
SigLimit SalePrice 0.58003 120398.81 . 200
SigLimit SalePrice 0.19734 105250.15 . 201
SigLimit SalePrice 1.08712 92633.58 . 202
SigLimit SalePrice -0.93681 115382.70 . 203
SigLimit SalePrice -0.22029 128621.12 . 204
SigLimit SalePrice -0.21090 117437.98 . 205
SigLimit SalePrice -1.08161 146101.42 . 206
SigLimit SalePrice 0.94341 112416.93 . 207
SigLimit SalePrice 0.39181 124523.74 . 208
SigLimit SalePrice -0.43702 109213.80 . 209
SigLimit SalePrice 0.85934 125873.65 . 210
SigLimit SalePrice 2.10975 104712.47 211 211
SigLimit SalePrice 0.22036 97356.70 . 212
SigLimit SalePrice -1.93457 159915.42 . 213
SigLimit SalePrice 0.67544 75921.53 . 214
SigLimit SalePrice -0.50284 126828.77 . 215
SigLimit SalePrice 1.63853 138157.97 . 216
SigLimit SalePrice -0.74474 132189.75 . 217
SigLimit SalePrice -2.33695 148218.66 218 218
SigLimit SalePrice -0.69575 91340.97 . 219
SigLimit SalePrice -0.71145 148182.02 . 220
SigLimit SalePrice -0.45135 187324.61 . 221
SigLimit SalePrice 0.13364 210797.95 . 222
SigLimit SalePrice -0.22843 180197.44 . 223
SigLimit SalePrice 0.85544 139342.44 . 224
SigLimit SalePrice 1.07499 142307.51 . 225
SigLimit SalePrice -0.77388 144199.10 . 226
SigLimit SalePrice -2.89437 156963.98 227 227
SigLimit SalePrice -0.77275 146233.93 . 228
SigLimit SalePrice 0.37209 90367.08 . 229
SigLimit SalePrice 1.06380 124048.50 . 230
SigLimit SalePrice 1.26826 69607.09 . 231
SigLimit SalePrice 0.62236 109460.86 . 232
SigLimit SalePrice 1.48799 129857.22 233 233
SigLimit SalePrice -0.66375 110987.94 . 234
SigLimit SalePrice 0.71370 113122.77 . 235
SigLimit SalePrice -1.11387 152412.23 . 236
SigLimit SalePrice -0.52447 189153.64 . 237
SigLimit SalePrice 1.68487 159821.24 . 238
SigLimit SalePrice -0.85944 153865.46 239 239
SigLimit SalePrice -2.22813 169363.69 240 240
SigLimit SalePrice -0.77278 106507.78 . 241
SigLimit SalePrice -2.46918 115199.27 242 242
SigLimit SalePrice -0.52060 162021.72 . 243
SigLimit SalePrice 0.26878 125054.29 . 244
SigLimit SalePrice -0.21894 128105.62 . 245
SigLimit SalePrice 1.07416 139774.90 . 246
SigLimit SalePrice 0.48694 160940.60 . 247
SigLimit SalePrice 0.32585 148102.81 . 248
SigLimit SalePrice -1.03618 207030.78 . 249
SigLimit SalePrice -1.03543 122490.39 . 250
SigLimit SalePrice -0.63306 128401.47 . 251
SigLimit SalePrice -1.23297 109273.29 . 252
SigLimit SalePrice -0.31669 138733.63 . 253
SigLimit SalePrice 1.09835 106011.04 . 254
SigLimit SalePrice -0.03365 135557.77 . 255
SigLimit SalePrice 0.41700 122299.53 . 256
SigLimit SalePrice -0.23995 180326.81 . 257
SigLimit SalePrice -0.72350 159257.13 . 258
SigLimit SalePrice -0.18707 173060.85 . 259
SigLimit SalePrice -1.51321 171362.25 . 260
SigLimit SalePrice -0.75747 152515.86 . 261
SigLimit SalePrice -0.92185 139603.04 . 262
SigLimit SalePrice 0.53827 128112.81 . 263
SigLimit SalePrice -0.09424 136560.35 . 264
SigLimit SalePrice -1.08408 144803.65 . 265
SigLimit SalePrice 1.02901 142994.96 . 266
SigLimit SalePrice 1.24591 109320.63 . 267
SigLimit SalePrice 0.51070 101528.44 . 268
SigLimit SalePrice -0.44712 100824.45 . 269
SigLimit SalePrice 0.22674 142243.21 . 270
SigLimit SalePrice 0.09172 153487.21 . 271
SigLimit SalePrice -0.42581 112027.05 . 272
SigLimit SalePrice 0.71861 128339.62 273 273
SigLimit SalePrice 0.71476 98200.28 . 274
SigLimit SalePrice -0.53945 113906.01 . 275
SigLimit SalePrice 0.57659 126037.51 . 276
SigLimit SalePrice -0.83636 139962.61 . 277
SigLimit SalePrice -1.84846 94330.12 . 278
SigLimit SalePrice -0.00662 114612.48 . 279
SigLimit SalePrice -0.84776 128470.65 . 280
SigLimit SalePrice -0.47273 117797.52 . 281
SigLimit SalePrice 0.40374 109870.20 . 282
SigLimit SalePrice -0.74196 137715.87 . 283
SigLimit SalePrice -1.33025 112920.30 . 284
SigLimit SalePrice 2.25476 88302.50 285 285
SigLimit SalePrice 1.10972 136157.87 . 286
SigLimit SalePrice 0.01729 157717.21 . 287
SigLimit SalePrice 0.65519 134454.58 288 288
SigLimit SalePrice -0.18930 196125.90 . 289
SigLimit SalePrice 0.80483 203725.46 . 290
SigLimit SalePrice 0.28340 115224.59 . 291
SigLimit SalePrice -2.49259 190247.41 292 292
SigLimit SalePrice -0.73991 129284.59 . 293
SigLimit SalePrice -1.89743 65812.00 . 294
SigLimit SalePrice -0.21271 160465.15 . 295
SigLimit SalePrice 0.77795 132580.90 . 296
SigLimit SalePrice 0.48832 63976.59 . 297
SigLimit SalePrice -1.35362 130156.08 . 298
SigLimit SalePrice -1.75727 182304.84 . 299
SigLimit SalePrice -0.59893 140907.79 . 300

Model Dependent CooksD Observation CooksDLabel
SigLimit SalePrice 0.01260 1 .
SigLimit SalePrice 0.00102 2 .
SigLimit SalePrice 0.00186 3 .
SigLimit SalePrice 0.00092 4 .
SigLimit SalePrice 0.00904 5 .
SigLimit SalePrice 0.00002 6 .
SigLimit SalePrice 0.01782 7 7
SigLimit SalePrice 0.00024 8 .
SigLimit SalePrice 0.00486 9 .
SigLimit SalePrice 0.00003 10 .
SigLimit SalePrice 0.00004 11 .
SigLimit SalePrice 0.00347 12 .
SigLimit SalePrice 0.00501 13 .
SigLimit SalePrice 0.00052 14 .
SigLimit SalePrice 0.00004 15 .
SigLimit SalePrice 0.00142 16 .
SigLimit SalePrice 0.00577 17 .
SigLimit SalePrice 0.00094 18 .
SigLimit SalePrice 0.00001 19 .
SigLimit SalePrice 0.00002 20 .
SigLimit SalePrice 0.01368 21 21
SigLimit SalePrice 0.01406 22 22
SigLimit SalePrice 0.00350 23 .
SigLimit SalePrice 0.00270 24 .
SigLimit SalePrice 0.00196 25 .
SigLimit SalePrice 0.00088 26 .
SigLimit SalePrice 0.01176 27 .
SigLimit SalePrice 0.00202 28 .
SigLimit SalePrice 0.00056 29 .
SigLimit SalePrice 0.00001 30 .
SigLimit SalePrice 0.00001 31 .
SigLimit SalePrice 0.00070 32 .
SigLimit SalePrice 0.00612 33 .
SigLimit SalePrice 0.00132 34 .
SigLimit SalePrice 0.00211 35 .
SigLimit SalePrice 0.00626 36 .
SigLimit SalePrice 0.00149 37 .
SigLimit SalePrice 0.00202 38 .
SigLimit SalePrice 0.00524 39 .
SigLimit SalePrice 0.00130 40 .
SigLimit SalePrice 0.00172 41 .
SigLimit SalePrice 0.00000 42 .
SigLimit SalePrice 0.00009 43 .
SigLimit SalePrice 0.00001 44 .
SigLimit SalePrice 0.00155 45 .
SigLimit SalePrice 0.00024 46 .
SigLimit SalePrice 0.00197 47 .
SigLimit SalePrice 0.00729 48 .
SigLimit SalePrice 0.00229 49 .
SigLimit SalePrice 0.00001 50 .
SigLimit SalePrice 0.00162 51 .
SigLimit SalePrice 0.00435 52 .
SigLimit SalePrice 0.00446 53 .
SigLimit SalePrice 0.01861 54 54
SigLimit SalePrice 0.00062 55 .
SigLimit SalePrice 0.00208 56 .
SigLimit SalePrice 0.00147 57 .
SigLimit SalePrice 0.01402 58 58
SigLimit SalePrice 0.00083 59 .
SigLimit SalePrice 0.00056 60 .
SigLimit SalePrice 0.00008 61 .
SigLimit SalePrice 0.00006 62 .
SigLimit SalePrice 0.00090 63 .
SigLimit SalePrice 0.00081 64 .
SigLimit SalePrice 0.00251 65 .
SigLimit SalePrice 0.00005 66 .
SigLimit SalePrice 0.00129 67 .
SigLimit SalePrice 0.01642 68 68
SigLimit SalePrice 0.00064 69 .
SigLimit SalePrice 0.00042 70 .
SigLimit SalePrice 0.00018 71 .
SigLimit SalePrice 0.00164 72 .
SigLimit SalePrice 0.00150 73 .
SigLimit SalePrice 0.00007 74 .
SigLimit SalePrice 0.00012 75 .
SigLimit SalePrice 0.01293 76 .
SigLimit SalePrice 0.00858 77 .
SigLimit SalePrice 0.00008 78 .
SigLimit SalePrice 0.00157 79 .
SigLimit SalePrice 0.00107 80 .
SigLimit SalePrice 0.00106 81 .
SigLimit SalePrice 0.00300 82 .
SigLimit SalePrice 0.00364 83 .
SigLimit SalePrice 0.00393 84 .
SigLimit SalePrice 0.00724 85 .
SigLimit SalePrice 0.00114 86 .
SigLimit SalePrice 0.00135 87 .
SigLimit SalePrice 0.00062 88 .
SigLimit SalePrice 0.00278 89 .
SigLimit SalePrice 0.00017 90 .
SigLimit SalePrice 0.00254 91 .
SigLimit SalePrice 0.00004 92 .
SigLimit SalePrice 0.00001 93 .
SigLimit SalePrice 0.00036 94 .
SigLimit SalePrice 0.00158 95 .
SigLimit SalePrice 0.00001 96 .
SigLimit SalePrice 0.00644 97 .
SigLimit SalePrice 0.00135 98 .
SigLimit SalePrice 0.00008 99 .
SigLimit SalePrice 0.00060 100 .
SigLimit SalePrice 0.00950 101 .
SigLimit SalePrice 0.00837 102 .
SigLimit SalePrice 0.00512 103 .
SigLimit SalePrice 0.00005 104 .
SigLimit SalePrice 0.00001 105 .
SigLimit SalePrice 0.00888 106 .
SigLimit SalePrice 0.00142 107 .
SigLimit SalePrice 0.00168 108 .
SigLimit SalePrice 0.00090 109 .
SigLimit SalePrice 0.01284 110 .
SigLimit SalePrice 0.00048 111 .
SigLimit SalePrice 0.00045 112 .
SigLimit SalePrice 0.00025 113 .
SigLimit SalePrice 0.00972 114 .
SigLimit SalePrice 0.00424 115 .
SigLimit SalePrice 0.00123 116 .
SigLimit SalePrice 0.00021 117 .
SigLimit SalePrice 0.00013 118 .
SigLimit SalePrice 0.00239 119 .
SigLimit SalePrice 0.00000 120 .
SigLimit SalePrice 0.00025 121 .
SigLimit SalePrice 0.00098 122 .
SigLimit SalePrice 0.10918 123 123
SigLimit SalePrice 0.00076 124 .
SigLimit SalePrice 0.00000 125 .
SigLimit SalePrice 0.01518 126 126
SigLimit SalePrice 0.00146 127 .
SigLimit SalePrice 0.00045 128 .
SigLimit SalePrice 0.00001 129 .
SigLimit SalePrice 0.00149 130 .
SigLimit SalePrice 0.00000 131 .
SigLimit SalePrice 0.00010 132 .
SigLimit SalePrice 0.00129 133 .
SigLimit SalePrice 0.00030 134 .
SigLimit SalePrice 0.00001 135 .
SigLimit SalePrice 0.00001 136 .
SigLimit SalePrice 0.00034 137 .
SigLimit SalePrice 0.00028 138 .
SigLimit SalePrice 0.00000 139 .
SigLimit SalePrice 0.00032 140 .
SigLimit SalePrice 0.00003 141 .
SigLimit SalePrice 0.00061 142 .
SigLimit SalePrice 0.00011 143 .
SigLimit SalePrice 0.00042 144 .
SigLimit SalePrice 0.00006 145 .
SigLimit SalePrice 0.00489 146 .
SigLimit SalePrice 0.00750 147 .
SigLimit SalePrice 0.00258 148 .
SigLimit SalePrice 0.00254 149 .
SigLimit SalePrice 0.00012 150 .
SigLimit SalePrice 0.05626 151 151
SigLimit SalePrice 0.00316 152 .
SigLimit SalePrice 0.00063 153 .
SigLimit SalePrice 0.00223 154 .
SigLimit SalePrice 0.00002 155 .
SigLimit SalePrice 0.00203 156 .
SigLimit SalePrice 0.00063 157 .
SigLimit SalePrice 0.00391 158 .
SigLimit SalePrice 0.00010 159 .
SigLimit SalePrice 0.00098 160 .
SigLimit SalePrice 0.00016 161 .
SigLimit SalePrice 0.00260 162 .
SigLimit SalePrice 0.00028 163 .
SigLimit SalePrice 0.00036 164 .
SigLimit SalePrice 0.00159 165 .
SigLimit SalePrice 0.01253 166 .
SigLimit SalePrice 0.00196 167 .
SigLimit SalePrice 0.01995 168 168
SigLimit SalePrice 0.00589 169 .
SigLimit SalePrice 0.00000 170 .
SigLimit SalePrice 0.00033 171 .
SigLimit SalePrice 0.00035 172 .
SigLimit SalePrice 0.01381 173 173
SigLimit SalePrice 0.00248 174 .
SigLimit SalePrice 0.00224 175 .
SigLimit SalePrice 0.00023 176 .
SigLimit SalePrice 0.00051 177 .
SigLimit SalePrice 0.00165 178 .
SigLimit SalePrice 0.00095 179 .
SigLimit SalePrice 0.00019 180 .
SigLimit SalePrice 0.00002 181 .
SigLimit SalePrice 0.00056 182 .
SigLimit SalePrice 0.00035 183 .
SigLimit SalePrice 0.00543 184 .
SigLimit SalePrice 0.02643 185 185
SigLimit SalePrice 0.00038 186 .
SigLimit SalePrice 0.00038 187 .
SigLimit SalePrice 0.00048 188 .
SigLimit SalePrice 0.00021 189 .
SigLimit SalePrice 0.00004 190 .
SigLimit SalePrice 0.00017 191 .
SigLimit SalePrice 0.00015 192 .
SigLimit SalePrice 0.00005 193 .
SigLimit SalePrice 0.00017 194 .
SigLimit SalePrice 0.00029 195 .
SigLimit SalePrice 0.00007 196 .
SigLimit SalePrice 0.00202 197 .
SigLimit SalePrice 0.00034 198 .
SigLimit SalePrice 0.00001 199 .
SigLimit SalePrice 0.00050 200 .
SigLimit SalePrice 0.00011 201 .
SigLimit SalePrice 0.00347 202 .
SigLimit SalePrice 0.00289 203 .
SigLimit SalePrice 0.00016 204 .
SigLimit SalePrice 0.00025 205 .
SigLimit SalePrice 0.00218 206 .
SigLimit SalePrice 0.00159 207 .
SigLimit SalePrice 0.00030 208 .
SigLimit SalePrice 0.00043 209 .
SigLimit SalePrice 0.00227 210 .
SigLimit SalePrice 0.00623 211 .
SigLimit SalePrice 0.00009 212 .
SigLimit SalePrice 0.01817 213 213
SigLimit SalePrice 0.00172 214 .
SigLimit SalePrice 0.00034 215 .
SigLimit SalePrice 0.00829 216 .
SigLimit SalePrice 0.00120 217 .
SigLimit SalePrice 0.09031 218 218
SigLimit SalePrice 0.00260 219 .
SigLimit SalePrice 0.00176 220 .
SigLimit SalePrice 0.00064 221 .
SigLimit SalePrice 0.00005 222 .
SigLimit SalePrice 0.00014 223 .
SigLimit SalePrice 0.00099 224 .
SigLimit SalePrice 0.00298 225 .
SigLimit SalePrice 0.00215 226 .
SigLimit SalePrice 0.02530 227 227
SigLimit SalePrice 0.00150 228 .
SigLimit SalePrice 0.00037 229 .
SigLimit SalePrice 0.00387 230 .
SigLimit SalePrice 0.00641 231 .
SigLimit SalePrice 0.00069 232 .
SigLimit SalePrice 0.02512 233 233
SigLimit SalePrice 0.00063 234 .
SigLimit SalePrice 0.00112 235 .
SigLimit SalePrice 0.00179 236 .
SigLimit SalePrice 0.00064 237 .
SigLimit SalePrice 0.00655 238 .
SigLimit SalePrice 0.00589 239 .
SigLimit SalePrice 0.05107 240 240
SigLimit SalePrice 0.00304 241 .
SigLimit SalePrice 0.01928 242 242
SigLimit SalePrice 0.00119 243 .
SigLimit SalePrice 0.00013 244 .
SigLimit SalePrice 0.00014 245 .
SigLimit SalePrice 0.00221 246 .
SigLimit SalePrice 0.00037 247 .
SigLimit SalePrice 0.00015 248 .
SigLimit SalePrice 0.00318 249 .
SigLimit SalePrice 0.00363 250 .
SigLimit SalePrice 0.00134 251 .
SigLimit SalePrice 0.00405 252 .
SigLimit SalePrice 0.00020 253 .
SigLimit SalePrice 0.00459 254 .
SigLimit SalePrice 0.00000 255 .
SigLimit SalePrice 0.00028 256 .
SigLimit SalePrice 0.00026 257 .
SigLimit SalePrice 0.00207 258 .
SigLimit SalePrice 0.00016 259 .
SigLimit SalePrice 0.00576 260 .
SigLimit SalePrice 0.00105 261 .
SigLimit SalePrice 0.00187 262 .
SigLimit SalePrice 0.00062 263 .
SigLimit SalePrice 0.00001 264 .
SigLimit SalePrice 0.00367 265 .
SigLimit SalePrice 0.00247 266 .
SigLimit SalePrice 0.00232 267 .
SigLimit SalePrice 0.00105 268 .
SigLimit SalePrice 0.00084 269 .
SigLimit SalePrice 0.00007 270 .
SigLimit SalePrice 0.00002 271 .
SigLimit SalePrice 0.00042 272 .
SigLimit SalePrice 0.00457 273 .
SigLimit SalePrice 0.00107 274 .
SigLimit SalePrice 0.00063 275 .
SigLimit SalePrice 0.00123 276 .
SigLimit SalePrice 0.00166 277 .
SigLimit SalePrice 0.00805 278 .
SigLimit SalePrice 0.00000 279 .
SigLimit SalePrice 0.00176 280 .
SigLimit SalePrice 0.00054 281 .
SigLimit SalePrice 0.00059 282 .
SigLimit SalePrice 0.00152 283 .
SigLimit SalePrice 0.00354 284 .
SigLimit SalePrice 0.01871 285 285
SigLimit SalePrice 0.00180 286 .
SigLimit SalePrice 0.00000 287 .
SigLimit SalePrice 0.00376 288 .
SigLimit SalePrice 0.00008 289 .
SigLimit SalePrice 0.00146 290 .
SigLimit SalePrice 0.00020 291 .
SigLimit SalePrice 0.02839 292 292
SigLimit SalePrice 0.00324 293 .
SigLimit SalePrice 0.01773 294 294
SigLimit SalePrice 0.00026 295 .
SigLimit SalePrice 0.00152 296 .
SigLimit SalePrice 0.00082 297 .
SigLimit SalePrice 0.00675 298 .
SigLimit SalePrice 0.00850 299 .
SigLimit SalePrice 0.00059 300 .

Model Dependent Observation DFFITS DFFITSOUT
SigLimit SalePrice 1 0.31861 .
SigLimit SalePrice 2 0.09029 .
SigLimit SalePrice 3 0.12177 .
SigLimit SalePrice 4 -0.08573 .
SigLimit SalePrice 5 0.26928 .
SigLimit SalePrice 6 -0.01301 .
SigLimit SalePrice 7 . 0.37928
SigLimit SalePrice 8 0.04366 .
SigLimit SalePrice 9 0.19752 .
SigLimit SalePrice 10 0.01636 .
SigLimit SalePrice 11 0.01720 .
SigLimit SalePrice 12 -0.16660 .
SigLimit SalePrice 13 0.20071 .
SigLimit SalePrice 14 0.06417 .
SigLimit SalePrice 15 0.01742 .
SigLimit SalePrice 16 0.10651 .
SigLimit SalePrice 17 -0.21458 .
SigLimit SalePrice 18 -0.08653 .
SigLimit SalePrice 19 -0.00777 .
SigLimit SalePrice 20 -0.01146 .
SigLimit SalePrice 21 . -0.33145
SigLimit SalePrice 22 . 0.33593
SigLimit SalePrice 23 0.16745 .
SigLimit SalePrice 24 0.14693 .
SigLimit SalePrice 25 -0.12508 .
SigLimit SalePrice 26 0.08382 .
SigLimit SalePrice 27 -0.31129 .
SigLimit SalePrice 28 0.12730 .
SigLimit SalePrice 29 0.06685 .
SigLimit SalePrice 30 0.00901 .
SigLimit SalePrice 31 -0.00958 .
SigLimit SalePrice 32 0.07492 .
SigLimit SalePrice 33 0.22141 .
SigLimit SalePrice 34 0.10270 .
SigLimit SalePrice 35 0.12977 .
SigLimit SalePrice 36 -0.22401 .
SigLimit SalePrice 37 -0.10918 .
SigLimit SalePrice 38 -0.12698 .
SigLimit SalePrice 39 -0.20493 .
SigLimit SalePrice 40 0.10169 .
SigLimit SalePrice 41 0.11717 .
SigLimit SalePrice 42 0.00251 .
SigLimit SalePrice 43 0.02662 .
SigLimit SalePrice 44 -0.01067 .
SigLimit SalePrice 45 0.11144 .
SigLimit SalePrice 46 0.04339 .
SigLimit SalePrice 47 -0.12550 .
SigLimit SalePrice 48 -0.24193 .
SigLimit SalePrice 49 0.13545 .
SigLimit SalePrice 50 -0.00737 .
SigLimit SalePrice 51 0.11391 .
SigLimit SalePrice 52 0.18656 .
SigLimit SalePrice 53 0.18881 .
SigLimit SalePrice 54 . 0.38966
SigLimit SalePrice 55 -0.07050 .
SigLimit SalePrice 56 -0.12890 .
SigLimit SalePrice 57 -0.10822 .
SigLimit SalePrice 58 . -0.33731
SigLimit SalePrice 59 -0.08153 .
SigLimit SalePrice 60 -0.06661 .
SigLimit SalePrice 61 0.02521 .
SigLimit SalePrice 62 -0.02199 .
SigLimit SalePrice 63 0.08497 .
SigLimit SalePrice 64 -0.08027 .
SigLimit SalePrice 65 -0.14191 .
SigLimit SalePrice 66 0.02079 .
SigLimit SalePrice 67 0.10143 .
SigLimit SalePrice 68 . -0.36316
SigLimit SalePrice 69 -0.07121 .
SigLimit SalePrice 70 -0.05809 .
SigLimit SalePrice 71 0.03742 .
SigLimit SalePrice 72 -0.11466 .
SigLimit SalePrice 73 0.10965 .
SigLimit SalePrice 74 0.02413 .
SigLimit SalePrice 75 0.03045 .
SigLimit SalePrice 76 0.32225 .
SigLimit SalePrice 77 -0.26234 .
SigLimit SalePrice 78 0.02526 .
SigLimit SalePrice 79 0.11198 .
SigLimit SalePrice 80 0.09225 .
SigLimit SalePrice 81 0.09207 .
SigLimit SalePrice 82 0.15483 .
SigLimit SalePrice 83 -0.17052 .
SigLimit SalePrice 84 -0.17750 .
SigLimit SalePrice 85 0.24129 .
SigLimit SalePrice 86 -0.09562 .
SigLimit SalePrice 87 -0.10401 .
SigLimit SalePrice 88 -0.07030 .
SigLimit SalePrice 89 -0.14907 .
SigLimit SalePrice 90 -0.03647 .
SigLimit SalePrice 91 -0.14231 .
SigLimit SalePrice 92 0.01819 .
SigLimit SalePrice 93 0.00707 .
SigLimit SalePrice 94 -0.05343 .
SigLimit SalePrice 95 -0.11219 .
SigLimit SalePrice 96 0.01038 .
SigLimit SalePrice 97 -0.22707 .
SigLimit SalePrice 98 -0.10380 .
SigLimit SalePrice 99 -0.02468 .
SigLimit SalePrice 100 0.06905 .
SigLimit SalePrice 101 0.27683 .
SigLimit SalePrice 102 0.25931 .
SigLimit SalePrice 103 -0.20256 .
SigLimit SalePrice 104 -0.01949 .
SigLimit SalePrice 105 -0.00829 .
SigLimit SalePrice 106 0.26820 .
SigLimit SalePrice 107 -0.10659 .
SigLimit SalePrice 108 0.11590 .
SigLimit SalePrice 109 -0.08494 .
SigLimit SalePrice 110 -0.32111 .
SigLimit SalePrice 111 0.06167 .
SigLimit SalePrice 112 -0.06010 .
SigLimit SalePrice 113 0.04432 .
SigLimit SalePrice 114 -0.27948 .
SigLimit SalePrice 115 -0.18438 .
SigLimit SalePrice 116 0.09893 .
SigLimit SalePrice 117 0.04102 .
SigLimit SalePrice 118 0.03258 .
SigLimit SalePrice 119 -0.13817 .
SigLimit SalePrice 120 0.00269 .
SigLimit SalePrice 121 -0.04475 .
SigLimit SalePrice 122 0.08859 .
SigLimit SalePrice 123 . 0.98452
SigLimit SalePrice 124 0.07763 .
SigLimit SalePrice 125 0.00134 .
SigLimit SalePrice 126 . 0.35093
SigLimit SalePrice 127 0.10820 .
SigLimit SalePrice 128 -0.05994 .
SigLimit SalePrice 129 -0.00640 .
SigLimit SalePrice 130 -0.10923 .
SigLimit SalePrice 131 -0.00017 .
SigLimit SalePrice 132 0.02774 .
SigLimit SalePrice 133 -0.10155 .
SigLimit SalePrice 134 -0.04909 .
SigLimit SalePrice 135 0.00891 .
SigLimit SalePrice 136 0.01014 .
SigLimit SalePrice 137 -0.05223 .
SigLimit SalePrice 138 0.04689 .
SigLimit SalePrice 139 -0.00071 .
SigLimit SalePrice 140 0.05090 .
SigLimit SalePrice 141 0.01550 .
SigLimit SalePrice 142 0.06951 .
SigLimit SalePrice 143 0.02936 .
SigLimit SalePrice 144 0.05775 .
SigLimit SalePrice 145 -0.02240 .
SigLimit SalePrice 146 -0.19783 .
SigLimit SalePrice 147 -0.24524 .
SigLimit SalePrice 148 0.14365 .
SigLimit SalePrice 149 0.14229 .
SigLimit SalePrice 150 -0.03101 .
SigLimit SalePrice 151 . 0.67740
SigLimit SalePrice 152 0.15908 .
SigLimit SalePrice 153 0.07076 .
SigLimit SalePrice 154 -0.13358 .
SigLimit SalePrice 155 0.01234 .
SigLimit SalePrice 156 -0.12724 .
SigLimit SalePrice 157 -0.07107 .
SigLimit SalePrice 158 -0.17697 .
SigLimit SalePrice 159 0.02832 .
SigLimit SalePrice 160 -0.08861 .
SigLimit SalePrice 161 -0.03592 .
SigLimit SalePrice 162 -0.14433 .
SigLimit SalePrice 163 -0.04719 .
SigLimit SalePrice 164 0.05359 .
SigLimit SalePrice 165 0.11252 .
SigLimit SalePrice 166 0.31715 .
SigLimit SalePrice 167 0.12508 .
SigLimit SalePrice 168 . -0.40345
SigLimit SalePrice 169 0.21762 .
SigLimit SalePrice 170 -0.00588 .
SigLimit SalePrice 171 -0.05132 .
SigLimit SalePrice 172 -0.05275 .
SigLimit SalePrice 173 . -0.33360
SigLimit SalePrice 174 0.14082 .
SigLimit SalePrice 175 0.13393 .
SigLimit SalePrice 176 0.04265 .
SigLimit SalePrice 177 -0.06393 .
SigLimit SalePrice 178 0.11470 .
SigLimit SalePrice 179 0.08713 .
SigLimit SalePrice 180 0.03864 .
SigLimit SalePrice 181 0.01371 .
SigLimit SalePrice 182 -0.06683 .
SigLimit SalePrice 183 -0.05255 .
SigLimit SalePrice 184 0.20926 .
SigLimit SalePrice 185 . 0.46326
SigLimit SalePrice 186 -0.05539 .
SigLimit SalePrice 187 -0.05492 .
SigLimit SalePrice 188 -0.06190 .
SigLimit SalePrice 189 0.04137 .
SigLimit SalePrice 190 -0.01735 .
SigLimit SalePrice 191 -0.03660 .
SigLimit SalePrice 192 -0.03456 .
SigLimit SalePrice 193 0.01899 .
SigLimit SalePrice 194 -0.03724 .
SigLimit SalePrice 195 0.04844 .
SigLimit SalePrice 196 0.02362 .
SigLimit SalePrice 197 0.12711 .
SigLimit SalePrice 198 0.05203 .
SigLimit SalePrice 199 0.00694 .
SigLimit SalePrice 200 0.06313 .
SigLimit SalePrice 201 0.03013 .
SigLimit SalePrice 202 0.16668 .
SigLimit SalePrice 203 -0.15210 .
SigLimit SalePrice 204 -0.03623 .
SigLimit SalePrice 205 -0.04441 .
SigLimit SalePrice 206 -0.13201 .
SigLimit SalePrice 207 0.11260 .
SigLimit SalePrice 208 0.04862 .
SigLimit SalePrice 209 -0.05867 .
SigLimit SalePrice 210 0.13468 .
SigLimit SalePrice 211 0.22459 .
SigLimit SalePrice 212 0.02724 .
SigLimit SalePrice 213 . -0.38308
SigLimit SalePrice 214 0.11731 .
SigLimit SalePrice 215 -0.05246 .
SigLimit SalePrice 216 0.25828 .
SigLimit SalePrice 217 -0.09809 .
SigLimit SalePrice 218 . -0.85644
SigLimit SalePrice 219 -0.14414 .
SigLimit SalePrice 220 -0.11844 .
SigLimit SalePrice 221 -0.07146 .
SigLimit SalePrice 222 0.02033 .
SigLimit SalePrice 223 -0.03339 .
SigLimit SalePrice 224 0.08910 .
SigLimit SalePrice 225 0.15452 .
SigLimit SalePrice 226 -0.13106 .
SigLimit SalePrice 227 . -0.45550
SigLimit SalePrice 228 -0.10950 .
SigLimit SalePrice 229 0.05421 .
SigLimit SalePrice 230 0.17610 .
SigLimit SalePrice 231 0.22666 .
SigLimit SalePrice 232 0.07416 .
SigLimit SalePrice 233 . 0.44925
SigLimit SalePrice 234 -0.07067 .
SigLimit SalePrice 235 0.09455 .
SigLimit SalePrice 236 -0.11961 .
SigLimit SalePrice 237 -0.07155 .
SigLimit SalePrice 238 0.22964 .
SigLimit SalePrice 239 -0.21695 .
SigLimit SalePrice 240 . -0.64349
SigLimit SalePrice 241 -0.15585 .
SigLimit SalePrice 242 . -0.39614
SigLimit SalePrice 243 -0.09735 .
SigLimit SalePrice 244 0.03215 .
SigLimit SalePrice 245 -0.03339 .
SigLimit SalePrice 246 0.13306 .
SigLimit SalePrice 247 0.05428 .
SigLimit SalePrice 248 0.03474 .
SigLimit SalePrice 249 -0.15950 .
SigLimit SalePrice 250 -0.17044 .
SigLimit SalePrice 251 -0.10356 .
SigLimit SalePrice 252 -0.18006 .
SigLimit SalePrice 253 -0.04003 .
SigLimit SalePrice 254 0.19178 .
SigLimit SalePrice 255 -0.00342 .
SigLimit SalePrice 256 0.04761 .
SigLimit SalePrice 257 -0.04568 .
SigLimit SalePrice 258 -0.12859 .
SigLimit SalePrice 259 -0.03582 .
SigLimit SalePrice 260 -0.21505 .
SigLimit SalePrice 261 -0.09179 .
SigLimit SalePrice 262 -0.12217 .
SigLimit SalePrice 263 0.07060 .
SigLimit SalePrice 264 -0.01052 .
SigLimit SalePrice 265 -0.17142 .
SigLimit SalePrice 266 0.14063 .
SigLimit SalePrice 267 0.13637 .
SigLimit SalePrice 268 0.09143 .
SigLimit SalePrice 269 -0.08200 .
SigLimit SalePrice 270 0.02370 .
SigLimit SalePrice 271 0.01308 .
SigLimit SalePrice 272 -0.05800 .
SigLimit SalePrice 273 0.19101 .
SigLimit SalePrice 274 0.09230 .
SigLimit SalePrice 275 -0.07111 .
SigLimit SalePrice 276 0.09890 .
SigLimit SalePrice 277 -0.11502 .
SigLimit SalePrice 278 -0.25482 .
SigLimit SalePrice 279 -0.00123 .
SigLimit SalePrice 280 -0.11854 .
SigLimit SalePrice 281 -0.06584 .
SigLimit SalePrice 282 0.06853 .
SigLimit SalePrice 283 -0.11010 .
SigLimit SalePrice 284 -0.16847 .
SigLimit SalePrice 285 . 0.38963
SigLimit SalePrice 286 0.12018 .
SigLimit SalePrice 287 0.00335 .
SigLimit SalePrice 288 0.17320 .
SigLimit SalePrice 289 -0.02531 .
SigLimit SalePrice 290 0.10814 .
SigLimit SalePrice 291 0.03964 .
SigLimit SalePrice 292 . -0.48084
SigLimit SalePrice 293 -0.16082 .
SigLimit SalePrice 294 . -0.37825
SigLimit SalePrice 295 -0.04552 .
SigLimit SalePrice 296 0.11036 .
SigLimit SalePrice 297 0.08070 .
SigLimit SalePrice 298 -0.23274 .
SigLimit SalePrice 299 -0.26177 .
SigLimit SalePrice 300 -0.06847 .

In [19]:
/*Check rows and column*/
proc print data=Dfbs;
run;


Out[19]:

362  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
363
364 /*Check rows and column*/
365 proc print data=Dfbs;
ERROR: File WORK.DFBS.DATA does not exist.
366 run;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

367 ods html5 close;ods listing;

368

First, we’ll use a DATA step to create a data set named Dfbs01 from the first 300 observations of the Dfbs data set. In the next DATA step, we’ll create a data set named Dfbs02 starting with observation 301. Then we’ll combine the two new data sets by using this UPDATE statement in a DATA step, combining by observation. Let’s run these three DATA steps and take a look at the new data sets in the temporary Work library.


In [20]:
data Dfbs01;
   set Dfbs (obs=300);
run;

data Dfbs02;
   set Dfbs (firstobs=301);
run;

data Dfbs2;
   update Dfbs01 Dfbs02;
   by Observation;
run;


Out[20]:

370  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
371
372 data Dfbs01;
ERROR: File WORK.DFBS.DATA does not exist.
373 set Dfbs (obs=300);
374 run;
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.DFBS01 may be incomplete. When this step was stopped there were 0 observations and 0 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

375
376 data Dfbs02;
ERROR: File WORK.DFBS.DATA does not exist.
377 set Dfbs (firstobs=301);
378 run;
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.DFBS02 may be incomplete. When this step was stopped there were 0 observations and 0 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

379
380 data Dfbs2;
381 update Dfbs01 Dfbs02;
382 by Observation;
383 run;
ERROR: BY variable Observation is not on input data set WORK.DFBS01.
ERROR: BY variable Observation is not on input data set WORK.DFBS02.
ERROR: UPDATE statement needs a BY statement.
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.DFBS2 may be incomplete. When this step was stopped there were 0 observations and 0 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

384 ods html5 close;ods listing;

385

In [21]:
proc print data = Dfbs2;
run;

proc sql number;
create table Dfbs3 as
select o.Model, o.Dependent, o.Observation, 
o._DFBETAS1, o._DFBETASOUT1,	
o._DFBETAS2, o._DFBETASOUT2, o._DFBETAS3, o._DFBETASOUT3, o._DFBETAS4, o._DFBETASOUT4 ,	
o._DFBETAS5, o._DFBETASOUT5, o._DFBETAS6, o._DFBETASOUT6,
t._DFBETAS7, t._DFBETASOUT7, t._DFBETAS8, t._DFBETASOUT8
from Dfbs01 as o inner join Dfbs02 as t
on o.observation = t.observation;
select* from Dfbs3;
run;


Out[21]:

387  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
388
389
390 proc print data = Dfbs2;
391 run;
NOTE: No variables in data set WORK.DFBS2.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

392
393 proc sql number;
394 create table Dfbs3 as
395 select o.Model, o.Dependent, o.Observation,
396 o._DFBETAS1, o._DFBETASOUT1,
397 o._DFBETAS2, o._DFBETASOUT2, o._DFBETAS3, o._DFBETASOUT3, o._DFBETAS4, o._DFBETASOUT4 ,
398 o._DFBETAS5, o._DFBETASOUT5, o._DFBETAS6, o._DFBETASOUT6,
399 t._DFBETAS7, t._DFBETASOUT7, t._DFBETAS8, t._DFBETASOUT8
400 from Dfbs01 as o inner join Dfbs02 as t
401 on o.observation = t.observation;
ERROR: Table WORK.DFBS01 doesn't have any columns. PROC SQL requires each of its tables to have at least 1 column.
ERROR: Table WORK.DFBS02 doesn't have any columns. PROC SQL requires each of its tables to have at least 1 column.
ERROR: Column observation could not be found in the table/view identified with the correlation name O.
ERROR: Column observation could not be found in the table/view identified with the correlation name O.
ERROR: Column observation could not be found in the table/view identified with the correlation name T.
ERROR: Column observation could not be found in the table/view identified with the correlation name T.
ERROR: Column Model could not be found in the table/view identified with the correlation name O.
ERROR: Column Dependent could not be found in the table/view identified with the correlation name O.
ERROR: Column Observation could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS1 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT1 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS2 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT2 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS3 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT3 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS4 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT4 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS5 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT5 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS6 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETASOUT6 could not be found in the table/view identified with the correlation name O.
ERROR: Column _DFBETAS7 could not be found in the table/view identified with the correlation name T.
ERROR: Column _DFBETASOUT7 could not be found in the table/view identified with the correlation name T.
ERROR: Column _DFBETAS8 could not be found in the table/view identified with the correlation name T.
ERROR: Column _DFBETASOUT8 could not be found in the table/view identified with the correlation name T.
NOTE: PROC SQL set option NOEXEC and will continue to check the syntax of statements.
402 select* from Dfbs3;
ERROR: File WORK.DFBS3.DATA does not exist.
NOTE: PROC SQL statements are executed immediately; The RUN statement has no effect.
403 run;
404 ods html5 close;ods listing;

405

In [22]:
data influential;
/*  Merge data sets from above.*/
    merge Rstud
          Cook 
          Dffits
          Dfbs2;
    by observation;

/*  Flag observations that have exceeded at least one cutpoint;*/
   if (ABS(Rstudent)>3) or (Cooksdlabel ne ' ') or Dffitsout then flag=1;
   array dfbetas{*} _dfbetasout: ;
   do i=2 to dim(dfbetas);
      if dfbetas{i} then flag=1;
   end;

/*  Set to missing values of influence statistics for those*/
/*  that have not exceeded cutpoints;*/
   if ABS(Rstudent)<=3 then RStudent=.;
   if Cooksdlabel eq ' ' then CooksD=.;

/*  Subset only observations that have been flagged.*/
   if flag=1;
   drop i flag;
run;

title;
proc print data=influential;
   id observation;
   var Rstudent CooksD Dffitsout _dfbetasout:; 
run;


Out[22]:

407  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
408
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE SQL used (Total process time):
real time 0.20 seconds
cpu time 0.16 seconds

409 data influential;
410 /* Merge data sets from above.*/
411 merge Rstud
412 Cook
413 Dffits
414 Dfbs2;
415 by observation;
416
417 /* Flag observations that have exceeded at least one cutpoint;*/
418 if (ABS(Rstudent)>3) or (Cooksdlabel ne ' ') or Dffitsout then flag=1;
WARNING: Defining an array with zero elements.
419 array dfbetas{*} _dfbetasout: ;
420 do i=2 to dim(dfbetas);
421 if dfbetas{i} then flag=1;
422 end;
423
424 /* Set to missing values of influence statistics for those*/
425 /* that have not exceeded cutpoints;*/
426 if ABS(Rstudent)<=3 then RStudent=.;
427 if Cooksdlabel eq ' ' then CooksD=.;
428
429 /* Subset only observations that have been flagged.*/
430 if flag=1;
431 drop i flag;
432 run;
NOTE: Character values have been converted to numeric values at the places given by: (Line):(Column).
418:44 427:22
ERROR: BY variable Observation is not on input data set WORK.DFBS2.
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.INFLUENTIAL may be incomplete. When this step was stopped there were 0 observations and 10 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

433
434 title;
435 proc print data=influential;
436 id observation;
WARNING: No variables found beginning with '_DFBETASOUT' in data set WORK.INFLUENTIAL.
437 var Rstudent CooksD Dffitsout _dfbetasout:;
438 run;
NOTE: No observations in data set WORK.INFLUENTIAL.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

439 ods html5 close;ods listing;

440

In [23]:
title "Displaying Influential Observations";
proc reg data=exercise plots(only) = (cooksd(label)
rstudentbypredicted(label));
id Subj;
model Pushups = Rest_Pulse / influence r;
run;
quit;


Out[23]:

442  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
443
444 title "Displaying Influential Observations";
445 proc reg data=exercise plots(only) = (cooksd(label)
ERROR: File WORK.EXERCISE.DATA does not exist.
446 rstudentbypredicted(label));
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
447 id Subj;
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
448 model Pushups = Rest_Pulse / influence r;
449 run;
NOTE: PROCEDURE REG used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

450 quit;
451
452 ods html5 close;ods listing;

453

In [24]:
ods graphics on;
title "Detecting Influential Observations in Multiple Regression";
proc reg data=exercise 
    plots(label only) = (cooksd
    rstudentbypredicted
    dffits
    dfbetas);
id Subj;
model Pushups = Age Max_Pulse Run_Pulse / influence;
run;
quit;
ods graphics off;


Out[24]:

455  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
456
457 ods graphics on;
458 title "Detecting Influential Observations in Multiple Regression";
459 proc reg data=exercise
ERROR: File WORK.EXERCISE.DATA does not exist.
460 plots(label only) = (cooksd
461 rstudentbypredicted
462 dffits
463 dfbetas);
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
464 id Subj;
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
465 model Pushups = Age Max_Pulse Run_Pulse / influence;
466 run;
NOTE: PROCEDURE REG used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

467 quit;
468 ods graphics off;
469 ods html5 close;ods listing;

470

Creating Dummy Variables


In [25]:
data Dummy;
    set Store;
    *Create dummy variable for Gender;
        if Gender = 'Male' then Male = 1;
        else if Gender = 'Female' then Male = 0;
    *Create Dummy Variable for Region;
        if Region not in ('North' 'East' 'South' 'West') then
            call missing(North, East, South);
            else if Region = 'North' then North = 1;
        else North = 0;
        if Region = 'East' then East = 1;
            else East = 0;
        if Region = 'South' then South = 1;
            else South = 0;
run;

title "Creating and Using Dummy variables";
proc print data=Dummy(obs=10) noobs;
    var Region Gender Male North East South;
run


Out[25]:

472  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
473
474 data Dummy;
ERROR: File WORK.STORE.DATA does not exist.
475 set Store;
476 *Create dummy variable for Gender;
477 if Gender = 'Male' then Male = 1;
478 else if Gender = 'Female' then Male = 0;
479 *Create Dummy Variable for Region;
480 if Region not in ('North' 'East' 'South' 'West') then
481 call missing(North, East, South);
482 else if Region = 'North' then North = 1;
483 else North = 0;
484 if Region = 'East' then East = 1;
485 else East = 0;
486 if Region = 'South' then South = 1;
487 else South = 0;
488 run;
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.DUMMY may be incomplete. When this step was stopped there were 0 observations and 6 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

489
490 title "Creating and Using Dummy variables";
491 proc print data=Dummy(obs=10) noobs;
492 var Region Gender Male North East South;
493 run
494 ;
NOTE: No observations in data set WORK.DUMMY.
NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

494! *';*";*/;ods html5 close;ods listing;

495

In [26]:
title "Running a Multiple Regression with Dummy Variables";
proc reg data=Dummy;
model Music_Sales = Total_Sales Male North East South;
run;
quit;


Out[26]:

497  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
498
499 title "Running a Multiple Regression with Dummy Variables";
500 proc reg data=Dummy;
ERROR: Variable MUSIC_SALES not found.
ERROR: Variable TOTAL_SALES not found.
NOTE: The previous statement has been deleted.
501 model Music_Sales = Total_Sales Male North East South;
502 run;
WARNING: No variables specified for an SSCP matrix. Execution terminating.
NOTE: PROCEDURE REG used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

503 quit;
504 ods html5 close;ods listing;

505

Detecting Collinearity via Variance Inflation Factor

(pay attention when VIF is between 5 and 10)


In [27]:
title "Using the VIF to Detect Collinearity";
proc reg data=exercise;
    model Pushups = Age Rest_Pulse Max_Pulse Run_Pulse / VIF;
run;
quit;


Out[27]:

507  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
508
509 title "Using the VIF to Detect Collinearity";
510 proc reg data=exercise;
ERROR: File WORK.EXERCISE.DATA does not exist.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
ERROR: No data set open to look up variables.
NOTE: The previous statement has been deleted.
511 model Pushups = Age Rest_Pulse Max_Pulse Run_Pulse / VIF;
512 run;
NOTE: PROCEDURE REG used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

513 quit;
514 ods html5 close;ods listing;

515

In the PLOTS= option, the global plot option ONLY suppresses the default plots. QQ requests a residual quantile-quantile plot to assess the normality of the residual error, and RESIDUALBYPREDICTED requests a plot of residuals by predicted values. RESIDUALS requests a panel of plots of residuals by the predictor variables in the model.


In [28]:
ods graphics / imagemap=on width=800;

proc reg data=statdata.fitness
         plots(only)=(QQ RESIDUALBYPREDICTED RESIDUALS); 
   PREDICT: model Oxygen_Consumption =
                  RunTime Age Run_Pulse Maximum_Pulse; 
   id Name; 
   title 'PREDICT Model - Plots of Diagnostic Statistics';
run;
quit;

title;


Out[28]:
SAS Output

PREDICT Model - Plots of Diagnostic Statistics

The REG Procedure

Model: PREDICT

Dependent Variable: Oxygen_Consumption

Number of Observations Read 31
Number of Observations Used 31
Analysis of Variance
Source DF Sum of
Squares
Mean
Square
F Value Pr > F
Model 4 711.45087 177.86272 33.01 <.0001
Error 26 140.10368 5.38860    
Corrected Total 30 851.55455      
Root MSE 2.32134 R-Square 0.8355
Dependent Mean 47.37581 Adj R-Sq 0.8102
Coeff Var 4.89984    
Parameter Estimates
Variable DF Parameter
Estimate
Standard
Error
t Value Pr > |t|
Intercept 1 97.16952 11.65703 8.34 <.0001
RunTime 1 -2.77576 0.34159 -8.13 <.0001
Age 1 -0.18903 0.09439 -2.00 0.0557
Run_Pulse 1 -0.34568 0.11820 -2.92 0.0071
Maximum_Pulse 1 0.27188 0.13438 2.02 0.0534

PREDICT Model - Plots of Diagnostic Statistics

The REG Procedure

Model: PREDICT

Dependent Variable: Oxygen_Consumption

 Residual = -0.234 
 Predicted Value = 37.624 
 Observation Number = 31 
 Name = William  Residual = -0.808 
 Predicted Value = 40.248 
 Observation Number = 30 
 Name = Vaughn  Residual = -0.7 
 Predicted Value = 39.9 
 Observation Number = 29 
 Name = Steve  Residual = 0.3699 
 Predicted Value = 39.04 
 Observation Number = 28 
 Name = Mark  Residual = 1.1428 
 Predicted Value = 44.537 
 Observation Number = 27 
 Name = Iris  Residual = 1.7953 
 Predicted Value = 43.015 
 Observation Number = 26 
 Name = George  Residual = 2.6594 
 Predicted Value = 45.261 
 Observation Number = 25 
 Name = Effie  Residual = -0.633 
 Predicted Value = 45.243 
 Observation Number = 24 
 Name = Don  Residual = -0.811 
 Predicted Value = 46.891 
 Observation Number = 23 
 Name = Carl  Residual = -0.058 
 Predicted Value = 44.808 
 Observation Number = 22 
 Name = Kate  Residual = 1.0395 
 Predicted Value = 44.08 
 Observation Number = 21 
 Name = Annie  Residual = -4.984 
 Predicted Value = 45.824 
 Observation Number = 20 
 Name = Jack  Residual = -0.054 
 Predicted Value = 49.144 
 Observation Number = 19 
 Name = Ralph  Residual = -0.181 
 Predicted Value = 47.451 
 Observation Number = 18 
 Name = Jackie  Residual = 1.2772 
 Predicted Value = 46.193 
 Observation Number = 17 
 Name = Trent  Residual = 0.6947 
 Predicted Value = 45.095 
 Observation Number = 16 
 Name = Buffy  Residual = 4.7245 
 Predicted Value = 47.126 
 Observation Number = 15 
 Name = Sammy  Residual = -1.463 
 Predicted Value = 48.233 
 Observation Number = 14 
 Name = Harold  Residual = 2.2042 
 Predicted Value = 48.336 
 Observation Number = 13 
 Name = Jane  Residual = 2.8605 
 Predicted Value = 47.529 
 Observation Number = 12 
 Name = Harriett  Residual = -2.694 
 Predicted Value = 48.004 
 Observation Number = 11 
 Name = Bob  Residual = -2.778 
 Predicted Value = 49.448 
 Observation Number = 10 
 Name = Teresa  Residual = 0.7372 
 Predicted Value = 49.813 
 Observation Number = 9 
 Name = Suzanne  Residual = -3.61 
 Predicted Value = 49.05 
 Observation Number = 8 
 Name = Patty  Residual = 0.0376 
 Predicted Value = 48.632 
 Observation Number = 7 
 Name = Nancy  Residual = -1.932 
 Predicted Value = 51.802 
 Observation Number = 6 
 Name = Allen  Residual = -1.98 
 Predicted Value = 51.14 
 Observation Number = 5 
 Name = Chris  Residual = -86E-5 
 Predicted Value = 54.631 
 Observation Number = 4 
 Name = Mimi  Residual = -2.481 
 Predicted Value = 56.781 
 Observation Number = 3 
 Name = Luanne  Residual = 2.2238 
 Predicted Value = 57.836 
 Observation Number = 2 
 Name = Gracie  Residual = 3.6367 
 Predicted Value = 55.933 
 Observation Number = 1 
 Name = Donna  Y = 0
 Quantile = 2.0537 
 Residual = 4.7245  Quantile = 1.6258 
 Residual = 3.6367  Quantile = 1.3787 
 Residual = 2.8605  Quantile = 1.1952 
 Residual = 2.6594  Quantile = 1.045 
 Residual = 2.2238  Quantile = 0.9154 
 Residual = 2.2042  Quantile = 0.7995 
 Residual = 1.7953  Quantile = 0.6935 
 Residual = 1.2772  Quantile = 0.5948 
 Residual = 1.1428  Quantile = 0.5015 
 Residual = 1.0395  Quantile = 0.4125 
 Residual = 0.7372  Quantile = 0.3266 
 Residual = 0.6947  Quantile = 0.243 
 Residual = 0.3699  Quantile = 0.1611 
 Residual = 0.0376  Quantile = 0.0803 
 Residual = -86E-5  Quantile = 0 
 Residual = -0.054  Quantile = -0.08 
 Residual = -0.058  Quantile = -0.161 
 Residual = -0.181  Quantile = -0.243 
 Residual = -0.234  Quantile = -0.327 
 Residual = -0.633  Quantile = -0.412 
 Residual = -0.7  Quantile = -0.502 
 Residual = -0.808  Quantile = -0.595 
 Residual = -0.811  Quantile = -0.693 
 Residual = -1.463  Quantile = -0.8 
 Residual = -1.932  Quantile = -0.915 
 Residual = -1.98  Quantile = -1.045 
 Residual = -2.481  Quantile = -1.195 
 Residual = -2.694  Quantile = -1.379 
 Residual = -2.778  Quantile = -1.626 
 Residual = -3.61  Quantile = -2.054 
 Residual = -4.984  Slope = 2.161 
 Y = 25E-15
 Residual = -0.234 
 RunTime = 14.03 
 Observation Number = 31 
 Name = William  Residual = -0.808 
 RunTime = 13.08 
 Observation Number = 30 
 Name = Vaughn  Residual = -0.7 
 RunTime = 12.88 
 Observation Number = 29 
 Name = Steve  Residual = 0.3699 
 RunTime = 12.63 
 Observation Number = 28 
 Name = Mark  Residual = 1.1428 
 RunTime = 11.95 
 Observation Number = 27 
 Name = Iris  Residual = 1.7953 
 RunTime = 11.63 
 Observation Number = 26 
 Name = George  Residual = 2.6594 
 RunTime = 11.5 
 Observation Number = 25 
 Name = Effie  Residual = -0.633 
 RunTime = 11.37 
 Observation Number = 24 
 Name = Don  Residual = -0.811 
 RunTime = 11.17 
 Observation Number = 23 
 Name = Carl  Residual = -0.058 
 RunTime = 11.12 
 Observation Number = 22 
 Name = Kate  Residual = 1.0395 
 RunTime = 11.08 
 Observation Number = 21 
 Name = Annie  Residual = -4.984 
 RunTime = 10.95 
 Observation Number = 20 
 Name = Jack  Residual = -0.054 
 RunTime = 10.85 
 Observation Number = 19 
 Name = Ralph  Residual = -0.181 
 RunTime = 10.6 
 Observation Number = 18 
 Name = Jackie  Residual = 1.2772 
 RunTime = 10.5 
 Observation Number = 17 
 Name = Trent  Residual = 0.6947 
 RunTime = 10.47 
 Observation Number = 16 
 Name = Buffy  Residual = 4.7245 
 RunTime = 10.33 
 Observation Number = 15 
 Name = Sammy  Residual = -1.463 
 RunTime = 10.25 
 Observation Number = 14 
 Name = Harold  Residual = 2.2042 
 RunTime = 10.13 
 Observation Number = 13 
 Name = Jane  Residual = 2.8605 
 RunTime = 10.08 
 Observation Number = 12 
 Name = Harriett  Residual = -2.694 
 RunTime = 10.07 
 Observation Number = 11 
 Name = Bob  Residual = -2.778 
 RunTime = 10 
 Observation Number = 10 
 Name = Teresa  Residual = 0.7372 
 RunTime = 9.93 
 Observation Number = 9 
 Name = Suzanne  Residual = -3.61 
 RunTime = 9.63 
 Observation Number = 8 
 Name = Patty  Residual = 0.0376 
 RunTime = 9.4 
 Observation Number = 7 
 Name = Nancy  Residual = -1.932 
 RunTime = 9.22 
 Observation Number = 6 
 Name = Allen  Residual = -1.98 
 RunTime = 8.95 
 Observation Number = 5 
 Name = Chris  Residual = -86E-5 
 RunTime = 8.92 
 Observation Number = 4 
 Name = Mimi  Residual = -2.481 
 RunTime = 8.65 
 Observation Number = 3 
 Name = Luanne  Residual = 2.2238 
 RunTime = 8.63 
 Observation Number = 2 
 Name = Gracie  Residual = 3.6367 
 RunTime = 8.17 
 Observation Number = 1 
 Name = Donna  Y = 0  Residual = -0.234 
 Age = 45 
 Observation Number = 31 
 Name = William  Residual = -0.808 
 Age = 44 
 Observation Number = 30 
 Name = Vaughn  Residual = -0.7 
 Age = 54 
 Observation Number = 29 
 Name = Steve  Residual = 0.3699 
 Age = 57 
 Observation Number = 28 
 Name = Mark  Residual = 1.1428 
 Age = 40 
 Observation Number = 27 
 Name = Iris  Residual = 1.7953 
 Age = 47 
 Observation Number = 26 
 Name = George  Residual = 2.6594 
 Age = 48 
 Observation Number = 25 
 Name = Effie  Residual = -0.633 
 Age = 44 
 Observation Number = 24 
 Name = Don  Residual = -0.811 
 Age = 54 
 Observation Number = 23 
 Name = Carl  Residual = -0.058 
 Age = 45 
 Observation Number = 22 
 Name = Kate  Residual = 1.0395 
 Age = 51 
 Observation Number = 21 
 Name = Annie  Residual = -4.984 
 Age = 51 
 Observation Number = 20 
 Name = Jack  Residual = -0.054 
 Age = 43 
 Observation Number = 19 
 Name = Ralph  Residual = -0.181 
 Age = 47 
 Observation Number = 18 
 Name = Jackie  Residual = 1.2772 
 Age = 52 
 Observation Number = 17 
 Name = Trent  Residual = 0.6947 
 Age = 52 
 Observation Number = 16 
 Name = Buffy  Residual = 4.7245 
 Age = 54 
 Observation Number = 15 
 Name = Sammy  Residual = -1.463 
 Age = 48 
 Observation Number = 14 
 Name = Harold  Residual = 2.2042 
 Age = 44 
 Observation Number = 13 
 Name = Jane  Residual = 2.8605 
 Age = 49 
 Observation Number = 12 
 Name = Harriett  Residual = -2.694 
 Age = 40 
 Observation Number = 11 
 Name = Bob  Residual = -2.778 
 Age = 51 
 Observation Number = 10 
 Name = Teresa  Residual = 0.7372 
 Age = 57 
 Observation Number = 9 
 Name = Suzanne  Residual = -3.61 
 Age = 52 
 Observation Number = 8 
 Name = Patty  Residual = 0.0376 
 Age = 49 
 Observation Number = 7 
 Name = Nancy  Residual = -1.932 
 Age = 38 
 Observation Number = 6 
 Name = Allen  Residual = -1.98 
 Age = 49 
 Observation Number = 5 
 Name = Chris  Residual = -86E-5 
 Age = 50 
 Observation Number = 4 
 Name = Mimi  Residual = -2.481 
 Age = 43 
 Observation Number = 3 
 Name = Luanne  Residual = 2.2238 
 Age = 38 
 Observation Number = 2 
 Name = Gracie  Residual = 3.6367 
 Age = 42 
 Observation Number = 1 
 Name = Donna  Y = 0  Residual = -0.234 
 Run_Pulse = 186 
 Observation Number = 31 
 Name = William  Residual = -0.808 
 Run_Pulse = 174 
 Observation Number = 30 
 Name = Vaughn  Residual = -0.7 
 Run_Pulse = 168 
 Observation Number = 29 
 Name = Steve  Residual = 0.3699 
 Run_Pulse = 174 
 Observation Number = 28 
 Name = Mark  Residual = 1.1428 
 Run_Pulse = 176 
 Observation Number = 27 
 Name = Iris  Residual = 1.7953 
 Run_Pulse = 176 
 Observation Number = 26 
 Name = George  Residual = 2.6594 
 Run_Pulse = 170 
 Observation Number = 25 
 Name = Effie  Residual = -0.633 
 Run_Pulse = 178 
 Observation Number = 24 
 Name = Don  Residual = -0.811 
 Run_Pulse = 156 
 Observation Number = 23 
 Name = Carl  Residual = -0.058 
 Run_Pulse = 176 
 Observation Number = 22 
 Name = Kate  Residual = 1.0395 
 Run_Pulse = 172 
 Observation Number = 21 
 Name = Annie  Residual = -4.984 
 Run_Pulse = 168 
 Observation Number = 20 
 Name = Jack  Residual = -0.054 
 Run_Pulse = 162 
 Observation Number = 19 
 Name = Ralph  Residual = -0.181 
 Run_Pulse = 162 
 Observation Number = 18 
 Name = Jackie  Residual = 1.2772 
 Run_Pulse = 170 
 Observation Number = 17 
 Name = Trent  Residual = 0.6947 
 Run_Pulse = 186 
 Observation Number = 16 
 Name = Buffy  Residual = 4.7245 
 Run_Pulse = 166 
 Observation Number = 15 
 Name = Sammy  Residual = -1.463 
 Run_Pulse = 162 
 Observation Number = 14 
 Name = Harold  Residual = 2.2042 
 Run_Pulse = 168 
 Observation Number = 13 
 Name = Jane  Residual = 2.8605 
 Run_Pulse = 168 
 Observation Number = 12 
 Name = Harriett  Residual = -2.694 
 Run_Pulse = 185 
 Observation Number = 11 
 Name = Bob  Residual = -2.778 
 Run_Pulse = 162 
 Observation Number = 10 
 Name = Teresa  Residual = 0.7372 
 Run_Pulse = 148 
 Observation Number = 9 
 Name = Suzanne  Residual = -3.61 
 Run_Pulse = 164 
 Observation Number = 8 
 Name = Patty  Residual = 0.0376 
 Run_Pulse = 186 
 Observation Number = 7 
 Name = Nancy  Residual = -1.932 
 Run_Pulse = 178 
 Observation Number = 6 
 Name = Allen  Residual = -1.98 
 Run_Pulse = 180 
 Observation Number = 5 
 Name = Chris  Residual = -86E-5 
 Run_Pulse = 146 
 Observation Number = 4 
 Name = Mimi  Residual = -2.481 
 Run_Pulse = 156 
 Observation Number = 3 
 Name = Luanne  Residual = 2.2238 
 Run_Pulse = 170 
 Observation Number = 2 
 Name = Gracie  Residual = 3.6367 
 Run_Pulse = 166 
 Observation Number = 1 
 Name = Donna  Y = 0  Residual = -0.234 
 Maximum_Pulse = 192 
 Observation Number = 31 
 Name = William  Residual = -0.808 
 Maximum_Pulse = 176 
 Observation Number = 30 
 Name = Vaughn  Residual = -0.7 
 Maximum_Pulse = 172 
 Observation Number = 29 
 Name = Steve  Residual = 0.3699 
 Maximum_Pulse = 176 
 Observation Number = 28 
 Name = Mark  Residual = 1.1428 
 Maximum_Pulse = 180 
 Observation Number = 27 
 Name = Iris  Residual = 1.7953 
 Maximum_Pulse = 176 
 Observation Number = 26 
 Name = George  Residual = 2.6594 
 Maximum_Pulse = 176 
 Observation Number = 25 
 Name = Effie  Residual = -0.633 
 Maximum_Pulse = 182 
 Observation Number = 24 
 Name = Don  Residual = -0.811 
 Maximum_Pulse = 165 
 Observation Number = 23 
 Name = Carl  Residual = -0.058 
 Maximum_Pulse = 176 
 Observation Number = 22 
 Name = Kate  Residual = 1.0395 
 Maximum_Pulse = 172 
 Observation Number = 21 
 Name = Annie  Residual = -4.984 
 Maximum_Pulse = 172 
 Observation Number = 20 
 Name = Jack  Residual = -0.054 
 Maximum_Pulse = 170 
 Observation Number = 19 
 Name = Ralph  Residual = -0.181 
 Maximum_Pulse = 164 
 Observation Number = 18 
 Name = Jackie  Residual = 1.2772 
 Maximum_Pulse = 172 
 Observation Number = 17 
 Name = Trent  Residual = 0.6947 
 Maximum_Pulse = 188 
 Observation Number = 16 
 Name = Buffy  Residual = 4.7245 
 Maximum_Pulse = 170 
 Observation Number = 15 
 Name = Sammy  Residual = -1.463 
 Maximum_Pulse = 164 
 Observation Number = 14 
 Name = Harold  Residual = 2.2042 
 Maximum_Pulse = 168 
 Observation Number = 13 
 Name = Jane  Residual = 2.8605 
 Maximum_Pulse = 168 
 Observation Number = 12 
 Name = Harriett  Residual = -2.694 
 Maximum_Pulse = 185 
 Observation Number = 11 
 Name = Bob  Residual = -2.778 
 Maximum_Pulse = 168 
 Observation Number = 10 
 Name = Teresa  Residual = 0.7372 
 Maximum_Pulse = 155 
 Observation Number = 9 
 Name = Suzanne  Residual = -3.61 
 Maximum_Pulse = 166 
 Observation Number = 8 
 Name = Patty  Residual = 0.0376 
 Maximum_Pulse = 188 
 Observation Number = 7 
 Name = Nancy  Residual = -1.932 
 Maximum_Pulse = 180 
 Observation Number = 6 
 Name = Allen  Residual = -1.98 
 Maximum_Pulse = 185 
 Observation Number = 5 
 Name = Chris  Residual = -86E-5 
 Maximum_Pulse = 155 
 Observation Number = 4 
 Name = Mimi  Residual = -2.481 
 Maximum_Pulse = 168 
 Observation Number = 3 
 Name = Luanne  Residual = 2.2238 
 Maximum_Pulse = 186 
 Observation Number = 2 
 Name = Gracie  Residual = 3.6367 
 Maximum_Pulse = 172 
 Observation Number = 1 
 Name = Donna  Y = 0

Code for SAS Statistic by example


In [29]:
*variables

Region
Advertising
Gender
Book_Sales
Music_Sales
Electronics_Sales
Total_Sales
;

proc format;
   value yesno 1 = 'Yes'
               0 = 'No';
data Store;
   length Region $ 5;
   call streaminit(57676);
   do Transaction = 1 to 200;
      R = ceil(rand('uniform')*10);
      select(R);
         when(1) Region = 'East';
         when(2) Region = 'West';
         when(3) Region = 'North';
         when(4) Region = 'South';
         otherwise;
      end;
      Advertising = rand('bernouli',.6);
      if rand('uniform') lt .6 then Gender = 'Female';
         else Gender = 'Male';
      Book_Sales = abs(round(rand('normal',250,50) + 30*(Gender = 'Female')
                    + 30*Advertising,10)) ;
      Music_Sales = abs(round(rand('uniform')*40 + rand('normal',50,5)
         + 30*(Region = 'East' and Gender = 'Male')
         - 20*(Region = 'West' and Gender = 'Female'),5) + 10*Advertising);
      Electronics_Sales = abs(round(rand('normal',300,60) + 70*(Gender = 'Male')
       + 55*Advertising + 50*(Region = 'East') - 20*(Region = 'South') 
       + 75*(Region = 'West'),10));
      Total_Sales = sum(Book_Sales,Music_Sales,Electronics_Sales);
   output;
   end;
   drop R;
   format Book_Sales Music_Sales Electronics_Sales Total_Sales dollar9.
          Advertising yesno.;
run;
 
/*title "Listing of Store";*/
/*proc print data=store heading=h;*/
/*run;*/

/*proc univariate data=store;*/
/*   var Book_Sales -- Total_Sales;*/
/*   histogram;*/
/*run;*/
/**/
/*title "Scatter Matrix for Store Variables";*/
/*proc sgscatter data=store;*/
/*   matrix Book_Sales -- Total_Sales / group = Gender;*/
/*run;*/
/**/
/*proc sgplot data=store;*/
/*   scatter x=Book_Sales y=Total_Sales / group=Gender;*/
/*run;*/

proc rank data=store out=median_sales groups=2;
   var Total_Sales;
   ranks Sales_Group;
run;

proc format;
   value sales 0 = 'Low'
               1 = 'High';
run;

/*proc logistic data=median_sales order=formatted;*/
/*   class Gender(param=ref ref='Male');*/
/*   model Sales_Group = Gender;*/
/*   format Sales_Group sales.;*/
/*quit;*/
/**/
/*proc logistic data=median_sales order=formatted;*/
/*   class Gender(param=ref ref='Male')*/
/*         Advertising (param=ref ref='No');*/
/*   model Sales_Group = Gender Advertising;*/
/*   format Sales_Group sales.;*/
/*quit;*/

*Create test data set;
libname example 'c:\books\statistics by example';
data example.Blood_Pressure;
   call streaminit(37373);
   do Drug = 'Placebo','Drug A','Drug B';
      do i = 1 to 20;
         Subj + 1;
         if mod(Subj,2) then Gender = 'M';
         else Gender = 'F';
         SBP = rand('normal',130,10) +
               7*(Drug eq 'Placebo') - 6*(Drug eq 'Drug B');
         SBP = round(SBP,2);
         DBP = rand('normal',80,5) +
               3*(Drug eq 'Placebo') - 2*(Drug eq 'Drug B');
         DBP = round(DBP,2);
         if Subj in (5,15,25,55) then call missing(SBP, DBP);
         if Subj in (4,18) then call missing(Gender);
         output;
      end;
   end;
   drop i;
run;

/*title "Listing of the first 25 observations from Blood_Pressure";*/
/*proc print data=example.Blood_Pressure(obs=25) noobs;*/
/*   var Subj Drug SBP DBP;*/
/*run;*/

data exercise;
   call streaminit(7657657);
   do Subj = 1 to 50;
      Age = round(rand('normal',50,15));
      Pushups = abs(int(rand('normal',40,10) - .30*age));
      Rest_Pulse = round(rand('normal',50,8) + .35*age);
      Max_Pulse = round(rest_pulse + rand('normal',50,5) - .05*age);
      Run_Pulse = round(max_pulse - rand('normal',3,3));
      output;
   end;
run;

*Data set for a paired t-test example;
data reading;
   input Subj Before After @@;
datalines;
1 100 110  2 120 121  3 130 140  4 90 110  5 85 92
6 133 137  7 210 209  8 155 179
;

/*title "Listing of Data Set READING";*/
/*proc print data=reading noobs;*/
/*run;*/

*Data set that violates assumptions for a t-test;
data salary;
   call streaminit(57575);
   do Subj = 1 to 50;
      do Gender = 'M','F';
         Income = round(20000*rand('exponential') + rand('uniform')*7000*(Gender = 'M'));
         output;
      end;
   end;
run;
/*proc univariate data=salary;*/
/*   class Gender;*/
/*   id Subj;*/
/*   var Income;*/
/*   histogram Income;*/
/*run;*/

*Data set risk for logistic regression example;
proc format;
   value yesno 1 = 'Yes'
               0 = 'No';
run;

data Risk;
   call streaminit(13579);
   length Age_Group $ 7;
   do i = 1 to 250;
      do Gender = 'F','M';
         Age = round(rand('uniform')*30 + 50);
         if missing(Age) then Age_Group = ' ';
         else if Age lt 60 then Age_Group = '1:< 60';
         else if Age le 70 then Age_Group = '2:60-70';
         else Age_Group = '3:71+';
         Chol = rand('normal',200,30) + rand('uniform')*8*(Gender='M');
         Chol = round(Chol);
         Score = .3*chol + age + 8*(Gender eq 'M');
         Heart_Attack = (Score gt 130)*(rand('uniform') lt .2);
         output;
       end;
   end;
   keep Gender Age Age_Group chol Heart_Attack;
   format Heart_Attack yesno.;
run;

/*title "Listing of first 100 observations from RISK";*/
/*proc print data=risk(obs=100);*/
/*run;*/


Out[29]:

534  ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
535
536 *variables
537
538 Region
539 Advertising
540 Gender
541 Book_Sales
542 Music_Sales
543 Electronics_Sales
544 Total_Sales
545 ;
546
547 proc format;
548 value yesno 1 = 'Yes'
NOTE: Format YESNO has been output.
549 0 = 'No';
NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.02 seconds
cpu time 0.00 seconds

550 data Store;
551 length Region $ 5;
552 call streaminit(57676);
553 do Transaction = 1 to 200;
554 R = ceil(rand('uniform')*10);
555 select(R);
556 when(1) Region = 'East';
557 when(2) Region = 'West';
558 when(3) Region = 'North';
559 when(4) Region = 'South';
560 otherwise;
561 end;
562 Advertising = rand('bernouli',.6);
563 if rand('uniform') lt .6 then Gender = 'Female';
564 else Gender = 'Male';
565 Book_Sales = abs(round(rand('normal',250,50) + 30*(Gender = 'Female')
566 + 30*Advertising,10)) ;
567 Music_Sales = abs(round(rand('uniform')*40 + rand('normal',50,5)
568 + 30*(Region = 'East' and Gender = 'Male')
569 - 20*(Region = 'West' and Gender = 'Female'),5) + 10*Advertising);
570 Electronics_Sales = abs(round(rand('normal',300,60) + 70*(Gender = 'Male')
571 + 55*Advertising + 50*(Region = 'East') - 20*(Region = 'South')
572 + 75*(Region = 'West'),10));
573 Total_Sales = sum(Book_Sales,Music_Sales,Electronics_Sales);
574 output;
575 end;
576 drop R;
577 format Book_Sales Music_Sales Electronics_Sales Total_Sales dollar9.
578 Advertising yesno.;
579 run;
NOTE: The data set WORK.STORE has 200 observations and 8 variables.
NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.00 seconds

580
581 /*title "Listing of Store";*/
582 /*proc print data=store heading=h;*/
583 /*run;*/
584
585 /*proc univariate data=store;*/
586 /* var Book_Sales -- Total_Sales;*/
587 /* histogram;*/
588 /*run;*/
589 /**/
590 /*title "Scatter Matrix for Store Variables";*/
591 /*proc sgscatter data=store;*/
592 /* matrix Book_Sales -- Total_Sales / group = Gender;*/
593 /*run;*/
594 /**/
595 /*proc sgplot data=store;*/
596 /* scatter x=Book_Sales y=Total_Sales / group=Gender;*/
597 /*run;*/
598
599 proc rank data=store out=median_sales groups=2;
600 var Total_Sales;
601 ranks Sales_Group;
602 run;
NOTE: The data set WORK.MEDIAN_SALES has 200 observations and 9 variables.
NOTE: PROCEDURE RANK used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

603
604 proc format;
605 value sales 0 = 'Low'
NOTE: Format SALES has been output.
606 1 = 'High';
607 run;
NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

608
609 /*proc logistic data=median_sales order=formatted;*/
610 /* class Gender(param=ref ref='Male');*/
611 /* model Sales_Group = Gender;*/
612 /* format Sales_Group sales.;*/
613 /*quit;*/
614 /**/
615 /*proc logistic data=median_sales order=formatted;*/
616 /* class Gender(param=ref ref='Male')*/
617 /* Advertising (param=ref ref='No');*/
618 /* model Sales_Group = Gender Advertising;*/
619 /* format Sales_Group sales.;*/
620 /*quit;*/
621
622 *Create test data set;
623 libname example 'c:\books\statistics by example';
NOTE: Library EXAMPLE does not exist.
624 data example.Blood_Pressure;
625 call streaminit(37373);
626 do Drug = 'Placebo','Drug A','Drug B';
627 do i = 1 to 20;
628 Subj + 1;
629 if mod(Subj,2) then Gender = 'M';
630 else Gender = 'F';
631 SBP = rand('normal',130,10) +
632 7*(Drug eq 'Placebo') - 6*(Drug eq 'Drug B');
633 SBP = round(SBP,2);
634 DBP = rand('normal',80,5) +
635 3*(Drug eq 'Placebo') - 2*(Drug eq 'Drug B');
636 DBP = round(DBP,2);
637 if Subj in (5,15,25,55) then call missing(SBP, DBP);
638 if Subj in (4,18) then call missing(Gender);
639 output;
640 end;
641 end;
642 drop i;
643 run;
ERROR: Library EXAMPLE does not exist.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

644
645 /*title "Listing of the first 25 observations from Blood_Pressure";*/
646 /*proc print data=example.Blood_Pressure(obs=25) noobs;*/
647 /* var Subj Drug SBP DBP;*/
648 /*run;*/
649
650 data exercise;
651 call streaminit(7657657);
652 do Subj = 1 to 50;
653 Age = round(rand('normal',50,15));
654 Pushups = abs(int(rand('normal',40,10) - .30*age));
655 Rest_Pulse = round(rand('normal',50,8) + .35*age);
656 Max_Pulse = round(rest_pulse + rand('normal',50,5) - .05*age);
657 Run_Pulse = round(max_pulse - rand('normal',3,3));
658 output;
659 end;
660 run;
NOTE: The data set WORK.EXERCISE has 50 observations and 6 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

661
662 *Data set for a paired t-test example;
663 data reading;
664 input Subj Before After @@;
665 datalines;
NOTE: SAS went to a new line when INPUT statement reached past the end of a line.
NOTE: The data set WORK.READING has 8 observations and 3 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

668 ;
669
670 /*title "Listing of Data Set READING";*/
671 /*proc print data=reading noobs;*/
672 /*run;*/
673
674 *Data set that violates assumptions for a t-test;
675 data salary;
676 call streaminit(57575);
677 do Subj = 1 to 50;
678 do Gender = 'M','F';
679 Income = round(20000*rand('exponential') + rand('uniform')*7000*(Gender = 'M'));
680 output;
681 end;
682 end;
683 run;
NOTE: The data set WORK.SALARY has 100 observations and 3 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

684 /*proc univariate data=salary;*/
685 /* class Gender;*/
686 /* id Subj;*/
687 /* var Income;*/
688 /* histogram Income;*/
689 /*run;*/
690
691 *Data set risk for logistic regression example;
692 proc format;
693 value yesno 1 = 'Yes'
NOTE: Format YESNO is already on the library WORK.FORMATS.
NOTE: Format YESNO has been output.
694 0 = 'No';
695 run;
NOTE: PROCEDURE FORMAT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

696
697 data Risk;
698 call streaminit(13579);
699 length Age_Group $ 7;
700 do i = 1 to 250;
701 do Gender = 'F','M';
702 Age = round(rand('uniform')*30 + 50);
703 if missing(Age) then Age_Group = ' ';
704 else if Age lt 60 then Age_Group = '1:< 60';
705 else if Age le 70 then Age_Group = '2:60-70';
706 else Age_Group = '3:71+';
707 Chol = rand('normal',200,30) + rand('uniform')*8*(Gender='M');
708 Chol = round(Chol);
709 Score = .3*chol + age + 8*(Gender eq 'M');
710 Heart_Attack = (Score gt 130)*(rand('uniform') lt .2);
711 output;
712 end;
713 end;
714 keep Gender Age Age_Group chol Heart_Attack;
715 format Heart_Attack yesno.;
716 run;
NOTE: The data set WORK.RISK has 500 observations and 5 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

717
718 /*title "Listing of first 100 observations from RISK";*/
719 /*proc print data=risk(obs=100);*/
720 /*run;*/
721 ods html5 close;ods listing;

722