Loading model from checkpoint file ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.021-0.4262.hdf5
Loading model Done!
Epoch 23/200
121/122 [============================>.] - ETA: 2s - loss: 3.6884 - acc: 0.8367 Epoch 00022: val_loss improved from inf to 0.37782, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.022-0.3778.hdf5
122/122 [==============================] - 424s - loss: 3.6982 - acc: 0.8364 - val_loss: 0.3778 - val_acc: 0.8858
Epoch 24/200
121/122 [============================>.] - ETA: 2s - loss: 3.0563 - acc: 0.8547 Epoch 00023: val_loss improved from 0.37782 to 0.35813, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.023-0.3581.hdf5
122/122 [==============================] - 396s - loss: 3.0474 - acc: 0.8544 - val_loss: 0.3581 - val_acc: 0.8853
Epoch 25/200
121/122 [============================>.] - ETA: 2s - loss: 2.6702 - acc: 0.8743 Epoch 00024: val_loss improved from 0.35813 to 0.31100, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.024-0.3110.hdf5
122/122 [==============================] - 397s - loss: 2.6562 - acc: 0.8745 - val_loss: 0.3110 - val_acc: 0.9029
Epoch 26/200
121/122 [============================>.] - ETA: 2s - loss: 2.2594 - acc: 0.8893 Epoch 00025: val_loss improved from 0.31100 to 0.29977, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.025-0.2998.hdf5
122/122 [==============================] - 397s - loss: 2.2547 - acc: 0.8892 - val_loss: 0.2998 - val_acc: 0.9130
Epoch 27/200
121/122 [============================>.] - ETA: 2s - loss: 1.9029 - acc: 0.9009 Epoch 00026: val_loss improved from 0.29977 to 0.27509, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.026-0.2751.hdf5
122/122 [==============================] - 397s - loss: 1.9033 - acc: 0.9008 - val_loss: 0.2751 - val_acc: 0.9120
Epoch 28/200
121/122 [============================>.] - ETA: 2s - loss: 1.7054 - acc: 0.9139 Epoch 00027: val_loss improved from 0.27509 to 0.24825, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.027-0.2482.hdf5
122/122 [==============================] - 396s - loss: 1.6986 - acc: 0.9143 - val_loss: 0.2482 - val_acc: 0.9273
Epoch 29/200
121/122 [============================>.] - ETA: 2s - loss: 1.5197 - acc: 0.9194 Epoch 00028: val_loss improved from 0.24825 to 0.23384, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.028-0.2338.hdf5
122/122 [==============================] - 396s - loss: 1.5127 - acc: 0.9196 - val_loss: 0.2338 - val_acc: 0.9298
Epoch 30/200
121/122 [============================>.] - ETA: 2s - loss: 1.2687 - acc: 0.9314 Epoch 00029: val_loss improved from 0.23384 to 0.21322, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.029-0.2132.hdf5
122/122 [==============================] - 397s - loss: 1.2748 - acc: 0.9315 - val_loss: 0.2132 - val_acc: 0.9394
Epoch 31/200
121/122 [============================>.] - ETA: 2s - loss: 1.1911 - acc: 0.9333 Epoch 00030: val_loss did not improve
122/122 [==============================] - 396s - loss: 1.1950 - acc: 0.9334 - val_loss: 0.2213 - val_acc: 0.9384
Epoch 32/200
121/122 [============================>.] - ETA: 2s - loss: 1.0873 - acc: 0.9366 Epoch 00031: val_loss improved from 0.21322 to 0.20865, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.031-0.2086.hdf5
122/122 [==============================] - 397s - loss: 1.0859 - acc: 0.9364 - val_loss: 0.2086 - val_acc: 0.9366
Epoch 33/200
121/122 [============================>.] - ETA: 2s - loss: 0.9980 - acc: 0.9432 Epoch 00032: val_loss improved from 0.20865 to 0.18935, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.032-0.1893.hdf5
122/122 [==============================] - 396s - loss: 0.9942 - acc: 0.9436 - val_loss: 0.1893 - val_acc: 0.9454
Epoch 34/200
121/122 [============================>.] - ETA: 2s - loss: 0.9025 - acc: 0.9482 Epoch 00033: val_loss improved from 0.18935 to 0.18435, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.033-0.1844.hdf5
122/122 [==============================] - 397s - loss: 0.9022 - acc: 0.9483 - val_loss: 0.1844 - val_acc: 0.9454
Epoch 35/200
121/122 [============================>.] - ETA: 2s - loss: 0.7573 - acc: 0.9522 Epoch 00034: val_loss improved from 0.18435 to 0.18373, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.034-0.1837.hdf5
122/122 [==============================] - 397s - loss: 0.7561 - acc: 0.9520 - val_loss: 0.1837 - val_acc: 0.9472
Epoch 36/200
121/122 [============================>.] - ETA: 2s - loss: 0.7396 - acc: 0.9542 Epoch 00035: val_loss improved from 0.18373 to 0.17409, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.035-0.1741.hdf5
122/122 [==============================] - 397s - loss: 0.7373 - acc: 0.9540 - val_loss: 0.1741 - val_acc: 0.9526
Epoch 37/200
121/122 [============================>.] - ETA: 2s - loss: 0.7014 - acc: 0.9553 Epoch 00036: val_loss improved from 0.17409 to 0.17403, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.036-0.1740.hdf5
122/122 [==============================] - 397s - loss: 0.7020 - acc: 0.9552 - val_loss: 0.1740 - val_acc: 0.9526
Epoch 38/200
121/122 [============================>.] - ETA: 2s - loss: 0.6516 - acc: 0.9578 Epoch 00037: val_loss improved from 0.17403 to 0.16262, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.037-0.1626.hdf5
122/122 [==============================] - 397s - loss: 0.6487 - acc: 0.9579 - val_loss: 0.1626 - val_acc: 0.9542
Epoch 39/200
121/122 [============================>.] - ETA: 2s - loss: 0.6168 - acc: 0.9606 Epoch 00038: val_loss improved from 0.16262 to 0.15674, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.038-0.1567.hdf5
122/122 [==============================] - 397s - loss: 0.6163 - acc: 0.9607 - val_loss: 0.1567 - val_acc: 0.9560
Epoch 40/200
121/122 [============================>.] - ETA: 2s - loss: 0.5454 - acc: 0.9647 Epoch 00039: val_loss improved from 0.15674 to 0.14514, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.039-0.1451.hdf5
122/122 [==============================] - 397s - loss: 0.5436 - acc: 0.9646 - val_loss: 0.1451 - val_acc: 0.9586
Epoch 41/200
121/122 [============================>.] - ETA: 2s - loss: 0.5332 - acc: 0.9651 Epoch 00040: val_loss improved from 0.14514 to 0.14024, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.040-0.1402.hdf5
122/122 [==============================] - 397s - loss: 0.5315 - acc: 0.9651 - val_loss: 0.1402 - val_acc: 0.9607
Epoch 42/200
121/122 [============================>.] - ETA: 2s - loss: 0.4407 - acc: 0.9693 Epoch 00041: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.4457 - acc: 0.9689 - val_loss: 0.1523 - val_acc: 0.9583
Epoch 43/200
121/122 [============================>.] - ETA: 2s - loss: 0.4091 - acc: 0.9680 Epoch 00042: val_loss improved from 0.14024 to 0.13319, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.042-0.1332.hdf5
122/122 [==============================] - 397s - loss: 0.4092 - acc: 0.9679 - val_loss: 0.1332 - val_acc: 0.9630
Epoch 44/200
121/122 [============================>.] - ETA: 2s - loss: 0.3964 - acc: 0.9720 Epoch 00043: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.3948 - acc: 0.9720 - val_loss: 0.1352 - val_acc: 0.9609
Epoch 45/200
121/122 [============================>.] - ETA: 2s - loss: 0.3366 - acc: 0.9747 Epoch 00044: val_loss improved from 0.13319 to 0.13070, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.044-0.1307.hdf5
122/122 [==============================] - 397s - loss: 0.3349 - acc: 0.9747 - val_loss: 0.1307 - val_acc: 0.9651
Epoch 46/200
121/122 [============================>.] - ETA: 2s - loss: 0.3189 - acc: 0.9759 Epoch 00045: val_loss improved from 0.13070 to 0.12413, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.045-0.1241.hdf5
122/122 [==============================] - 397s - loss: 0.3178 - acc: 0.9758 - val_loss: 0.1241 - val_acc: 0.9653
Epoch 47/200
121/122 [============================>.] - ETA: 2s - loss: 0.2903 - acc: 0.9760 Epoch 00046: val_loss improved from 0.12413 to 0.12202, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.046-0.1220.hdf5
122/122 [==============================] - 397s - loss: 0.2929 - acc: 0.9761 - val_loss: 0.1220 - val_acc: 0.9666
Epoch 48/200
121/122 [============================>.] - ETA: 2s - loss: 0.3255 - acc: 0.9754 Epoch 00047: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.3256 - acc: 0.9754 - val_loss: 0.1239 - val_acc: 0.9679
Epoch 49/200
121/122 [============================>.] - ETA: 2s - loss: 0.2920 - acc: 0.9771 Epoch 00048: val_loss improved from 0.12202 to 0.11761, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.048-0.1176.hdf5
122/122 [==============================] - 397s - loss: 0.2928 - acc: 0.9770 - val_loss: 0.1176 - val_acc: 0.9689
Epoch 50/200
121/122 [============================>.] - ETA: 2s - loss: 0.2751 - acc: 0.9786 Epoch 00049: val_loss improved from 0.11761 to 0.11230, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.049-0.1123.hdf5
122/122 [==============================] - 397s - loss: 0.2745 - acc: 0.9787 - val_loss: 0.1123 - val_acc: 0.9718
Epoch 51/200
121/122 [============================>.] - ETA: 2s - loss: 0.2211 - acc: 0.9799 Epoch 00050: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.2205 - acc: 0.9800 - val_loss: 0.1146 - val_acc: 0.9700
Epoch 52/200
121/122 [============================>.] - ETA: 2s - loss: 0.2761 - acc: 0.9773 Epoch 00051: val_loss improved from 0.11230 to 0.11150, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.051-0.1115.hdf5
122/122 [==============================] - 397s - loss: 0.2763 - acc: 0.9771 - val_loss: 0.1115 - val_acc: 0.9702
Epoch 53/200
121/122 [============================>.] - ETA: 2s - loss: 0.2081 - acc: 0.9809 Epoch 00052: val_loss improved from 0.11150 to 0.10400, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.052-0.1040.hdf5
122/122 [==============================] - 397s - loss: 0.2071 - acc: 0.9810 - val_loss: 0.1040 - val_acc: 0.9736
Epoch 54/200
121/122 [============================>.] - ETA: 2s - loss: 0.2081 - acc: 0.9810 Epoch 00053: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.2109 - acc: 0.9807 - val_loss: 0.1044 - val_acc: 0.9723
Epoch 55/200
121/122 [============================>.] - ETA: 2s - loss: 0.2108 - acc: 0.9822 Epoch 00054: val_loss improved from 0.10400 to 0.10020, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.054-0.1002.hdf5
122/122 [==============================] - 397s - loss: 0.2099 - acc: 0.9823 - val_loss: 0.1002 - val_acc: 0.9736
Epoch 56/200
121/122 [============================>.] - ETA: 2s - loss: 0.1709 - acc: 0.9827 Epoch 00055: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1698 - acc: 0.9828 - val_loss: 0.1004 - val_acc: 0.9728
Epoch 57/200
121/122 [============================>.] - ETA: 2s - loss: 0.1777 - acc: 0.9835 Epoch 00056: val_loss improved from 0.10020 to 0.09666, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.056-0.0967.hdf5
122/122 [==============================] - 397s - loss: 0.1772 - acc: 0.9834 - val_loss: 0.0967 - val_acc: 0.9749
Epoch 58/200
121/122 [============================>.] - ETA: 2s - loss: 0.1632 - acc: 0.9842 Epoch 00057: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1630 - acc: 0.9844 - val_loss: 0.1017 - val_acc: 0.9739
Epoch 59/200
121/122 [============================>.] - ETA: 2s - loss: 0.1509 - acc: 0.9848 Epoch 00058: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1506 - acc: 0.9847 - val_loss: 0.1038 - val_acc: 0.9739
Epoch 60/200
121/122 [============================>.] - ETA: 2s - loss: 0.1520 - acc: 0.9853 Epoch 00059: val_loss improved from 0.09666 to 0.09607, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.059-0.0961.hdf5
122/122 [==============================] - 397s - loss: 0.1524 - acc: 0.9853 - val_loss: 0.0961 - val_acc: 0.9751
Epoch 61/200
121/122 [============================>.] - ETA: 2s - loss: 0.1319 - acc: 0.9874 Epoch 00060: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1313 - acc: 0.9874 - val_loss: 0.0966 - val_acc: 0.9744
Epoch 62/200
121/122 [============================>.] - ETA: 2s - loss: 0.1256 - acc: 0.9875 Epoch 00061: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1263 - acc: 0.9873 - val_loss: 0.1010 - val_acc: 0.9728
Epoch 63/200
121/122 [============================>.] - ETA: 2s - loss: 0.1472 - acc: 0.9870 Epoch 00062: val_loss improved from 0.09607 to 0.08979, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.062-0.0898.hdf5
122/122 [==============================] - 397s - loss: 0.1488 - acc: 0.9869 - val_loss: 0.0898 - val_acc: 0.9770
Epoch 64/200
121/122 [============================>.] - ETA: 2s - loss: 0.1399 - acc: 0.9877 Epoch 00063: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.1401 - acc: 0.9878 - val_loss: 0.0914 - val_acc: 0.9764
Epoch 65/200
121/122 [============================>.] - ETA: 2s - loss: 0.1343 - acc: 0.9873 Epoch 00064: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.1339 - acc: 0.9873 - val_loss: 0.0916 - val_acc: 0.9739
Epoch 66/200
121/122 [============================>.] - ETA: 2s - loss: 0.1315 - acc: 0.9866 Epoch 00065: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.1308 - acc: 0.9867 - val_loss: 0.0924 - val_acc: 0.9762
Epoch 67/200
121/122 [============================>.] - ETA: 2s - loss: 0.1119 - acc: 0.9879 Epoch 00066: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.1119 - acc: 0.9878 - val_loss: 0.0967 - val_acc: 0.9757
Epoch 68/200
121/122 [============================>.] - ETA: 2s - loss: 0.1074 - acc: 0.9894 Epoch 00067: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.1070 - acc: 0.9894 - val_loss: 0.0947 - val_acc: 0.9764
Epoch 69/200
121/122 [============================>.] - ETA: 2s - loss: 0.1033 - acc: 0.9893 Epoch 00068: val_loss did not improve
Epoch 00068: reducing learning rate to 9.99999974738e-07.
122/122 [==============================] - 399s - loss: 0.1030 - acc: 0.9894 - val_loss: 0.0951 - val_acc: 0.9754
Epoch 70/200
121/122 [============================>.] - ETA: 2s - loss: 0.0917 - acc: 0.9904 Epoch 00069: val_loss improved from 0.08979 to 0.08944, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.069-0.0894.hdf5
122/122 [==============================] - 397s - loss: 0.0921 - acc: 0.9905 - val_loss: 0.0894 - val_acc: 0.9770
Epoch 71/200
121/122 [============================>.] - ETA: 2s - loss: 0.0805 - acc: 0.9902 Epoch 00070: val_loss improved from 0.08944 to 0.08801, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.070-0.0880.hdf5
122/122 [==============================] - 397s - loss: 0.0805 - acc: 0.9901 - val_loss: 0.0880 - val_acc: 0.9770
Epoch 72/200
121/122 [============================>.] - ETA: 2s - loss: 0.0823 - acc: 0.9915 Epoch 00071: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.0818 - acc: 0.9915 - val_loss: 0.0881 - val_acc: 0.9777
Epoch 73/200
121/122 [============================>.] - ETA: 2s - loss: 0.0839 - acc: 0.9910 Epoch 00072: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.0840 - acc: 0.9910 - val_loss: 0.0882 - val_acc: 0.9777
Epoch 74/200
121/122 [============================>.] - ETA: 2s - loss: 0.0727 - acc: 0.9905 Epoch 00073: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.0722 - acc: 0.9906 - val_loss: 0.0888 - val_acc: 0.9775
Epoch 75/200
121/122 [============================>.] - ETA: 2s - loss: 0.0984 - acc: 0.9903 Epoch 00074: val_loss improved from 0.08801 to 0.08757, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.074-0.0876.hdf5
122/122 [==============================] - 397s - loss: 0.1006 - acc: 0.9903 - val_loss: 0.0876 - val_acc: 0.9772
Epoch 76/200
121/122 [============================>.] - ETA: 2s - loss: 0.0776 - acc: 0.9901 Epoch 00075: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.0794 - acc: 0.9901 - val_loss: 0.0895 - val_acc: 0.9767
Epoch 77/200
121/122 [============================>.] - ETA: 2s - loss: 0.0727 - acc: 0.9916 Epoch 00076: val_loss did not improve
Epoch 00076: reducing learning rate to 9.99999997475e-08.
122/122 [==============================] - 396s - loss: 0.0725 - acc: 0.9915 - val_loss: 0.0881 - val_acc: 0.9767
Epoch 78/200
121/122 [============================>.] - ETA: 2s - loss: 0.0819 - acc: 0.9893 Epoch 00077: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.0825 - acc: 0.9892 - val_loss: 0.0882 - val_acc: 0.9770
Epoch 79/200
121/122 [============================>.] - ETA: 2s - loss: 0.0702 - acc: 0.9913 Epoch 00078: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.0701 - acc: 0.9912 - val_loss: 0.0886 - val_acc: 0.9767
Epoch 80/200
121/122 [============================>.] - ETA: 2s - loss: 0.0747 - acc: 0.9919 Epoch 00079: val_loss improved from 0.08757 to 0.08747, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.079-0.0875.hdf5
122/122 [==============================] - 397s - loss: 0.0744 - acc: 0.9920 - val_loss: 0.0875 - val_acc: 0.9770
Epoch 81/200
121/122 [============================>.] - ETA: 2s - loss: 0.0825 - acc: 0.9911 Epoch 00080: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.0820 - acc: 0.9912 - val_loss: 0.0880 - val_acc: 0.9770
Epoch 82/200
121/122 [============================>.] - ETA: 2s - loss: 0.0825 - acc: 0.9903 Epoch 00081: val_loss did not improve
Epoch 00081: reducing learning rate to 1.00000001169e-08.
122/122 [==============================] - 396s - loss: 0.0827 - acc: 0.9901 - val_loss: 0.0892 - val_acc: 0.9770
Epoch 83/200
121/122 [============================>.] - ETA: 2s - loss: 0.0844 - acc: 0.9916 Epoch 00082: val_loss improved from 0.08747 to 0.08736, saving model to ./resnet50_FT38_Classifier_Rep2/checkpoint/weights.082-0.0874.hdf5
122/122 [==============================] - 397s - loss: 0.0843 - acc: 0.9916 - val_loss: 0.0874 - val_acc: 0.9770
Epoch 84/200
121/122 [============================>.] - ETA: 2s - loss: 0.0740 - acc: 0.9921 Epoch 00083: val_loss did not improve
122/122 [==============================] - 396s - loss: 0.0747 - acc: 0.9917 - val_loss: 0.0895 - val_acc: 0.9770
Epoch 85/200
121/122 [============================>.] - ETA: 2s - loss: 0.0728 - acc: 0.9917 Epoch 00084: val_loss did not improve
122/122 [==============================] - 397s - loss: 0.0732 - acc: 0.9916 - val_loss: 0.0885 - val_acc: 0.9770
Epoch 86/200
108/122 [=========================>....] - ETA: 40s - loss: 0.0720 - acc: 0.9899
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-10-2274f7d71d67> in <module>()
24 callbacks=[early_stopping, model_checkpoint, learningrate_schedule, tensorboard],
25 validation_data=(X_valid,y_valid), class_weight=class_weight,
---> 26 workers=3, pickle_safe=True, initial_epoch=22)
/usr/local/lib64/python2.7/site-packages/keras/legacy/interfaces.pyc in wrapper(*args, **kwargs)
86 warnings.warn('Update your `' + object_name +
87 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 88 return func(*args, **kwargs)
89 wrapper._legacy_support_signature = inspect.getargspec(func)
90 return wrapper
/usr/local/lib64/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_q_size, workers, pickle_safe, initial_epoch)
1874 outs = self.train_on_batch(x, y,
1875 sample_weight=sample_weight,
-> 1876 class_weight=class_weight)
1877
1878 if not isinstance(outs, list):
/usr/local/lib64/python2.7/site-packages/keras/engine/training.pyc in train_on_batch(self, x, y, sample_weight, class_weight)
1618 ins = x + y + sample_weights
1619 self._make_train_function()
-> 1620 outputs = self.train_function(ins)
1621 if len(outputs) == 1:
1622 return outputs[0]
/usr/local/lib64/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
2071 session = get_session()
2072 updated = session.run(self.outputs + [self.updates_op],
-> 2073 feed_dict=feed_dict)
2074 return updated[:len(self.outputs)]
2075
/usr/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/usr/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/usr/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/usr/lib/python2.7/dist-packages/tensorflow/python/client/session.pyc in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: