In [ ]:
import numpy as np
In [ ]:
# Regular Python
%timeit python_list_1 = list(range(1, 1000))
python_list_1 = list(range(1, 1000))
python_list_2 = list(range(1, 1000))
In [ ]:
#Numpy
%timeit numpy_list_1 = np.arange(1, 1000)
numpy_list_1 = np.arange(1, 1000)
numpy_list_2 = np.arange(1, 1000)
In [ ]:
%%timeit
# Regular Python
[(x + y) for x, y in zip(python_list_1, python_list_2)]
[(x - y) for x, y in zip(python_list_1, python_list_2)]
[(x * y) for x, y in zip(python_list_1, python_list_2)]
[(x / y) for x, y in zip(python_list_1, python_list_2)]
In [ ]:
%%timeit
#Numpy
numpy_list_1 + numpy_list_2
numpy_list_1 - numpy_list_2
numpy_list_1 * numpy_list_2
numpy_list_1 / numpy_list_2
Numpy Arrays are central to Numpy. They ca be created in several ways.
np.arange([start,] stop[, step,], dtype=None)
In [ ]:
np.arange(10)
In [ ]:
np.arange(3, 10)
In [ ]:
np.arange(1, 10, 0.5)
In [ ]:
np.arange(1, 10, 2, dtype=np.float64)
np.array(object, dtype=None, ...)
In [ ]:
np.array([1,2,3])
In [ ]:
np.array([1,2,3], dtype=np.float64)
In [ ]:
a = np.array([[1, 1], [1, 1]])
a
In [ ]:
a = np.array([[[1, 1], [1, 1]], [[1, 1], [1, 1]]])
a
In [ ]:
a.shape
np.linspace(start, stop, num=50, dtype=None, ...)
In [ ]:
np.linspace(1, 10)
In [ ]:
np.linspace(1, 10, num=12)
In [ ]:
ds = np.arange(1, 10, 2)
ds.ndim
In [ ]:
ds.shape
In [ ]:
ds.size
In [ ]:
len(ds)
In [ ]:
ds.dtype
In [ ]:
ds
zeros(shape, dtype=float, ...)
In [ ]:
np.zeros((3, 4))
In [ ]:
np.zeros((3, 4), dtype=np.int64)
np.linspace(start, stop, num=50, endpoint=True)
In [ ]:
np.linspace(1, 5)
In [ ]:
np.linspace(0, 2, num=4)
In [ ]:
np.linspace(0, 2, num=4, endpoint=False)
random_sample(size=None)
In [ ]:
np.random.random((2,3))
In [ ]:
np.random.choice(np.arange(10), 3)
In [ ]:
data_set = np.random.random((3,4))
data_set
In [ ]:
np.max(data_set)
In [ ]:
np.max(data_set, axis=0)
In [ ]:
np.max(data_set, axis=1)
In [ ]:
np.min(data_set)
In [ ]:
np.mean(data_set)
In [ ]:
np.median(data_set)
In [ ]:
np.std(data_set)
In [ ]:
np.sum(data_set)
In [ ]:
np.argmax(data_set)
In [ ]:
np.argmin(data_set)
In [ ]:
np.argsort(data_set)
In [ ]:
np.reshape(data_set, (4, 3))
In [ ]:
np.reshape(data_set, (12, 1))
In [ ]:
np.reshape(data_set, (12))
In [ ]:
np.ravel(data_set)
In [ ]:
data_set = np.random.randint(0, 10, size=(5, 10))
data_set
In [ ]:
data_set[1]
In [ ]:
data_set[1][0]
In [ ]:
data_set[1, 0]
In [ ]:
data_set[2:4]
In [ ]:
data_set[2:4, 0]
In [ ]:
data_set[2:4, 0:2]
In [ ]:
data_set[:,0]
In [ ]:
data_set[2:4:1]
In [ ]:
data_set[::]
In [ ]:
data_set[::2]
In [ ]:
data_set[2:4,::2]
In [ ]:
data_set[2:4,::-2]