In [20]:
from traitlets.config.manager import BaseJSONConfigManager
path = "/Users/matthiaszunhammer/anaconda/etc/jupyter/nbconfig"
cm = BaseJSONConfigManager(config_dir=path)
cm.update('livereveal', {
'theme': 'simple',
'transition': 'none',
'start_slideshow_at': 'selected',
})
cm.update('livereveal', {
'width': 1024,
'height': 768,
})
Out[20]:
After a sunday leisure trip to "Rennbahn Düsseldorf", I've got the idea that horseracing is an ideal training ground for practicing machine learning (ML) and Big Data handling as:
Some sites offer data (e.g. Betwise, Betfair). But:
In this process, called "web-scraping", I learned:
In [ ]:
import hracing.scrape
hracing.scrape.main()
Hierarchical data structure: Past performances nested in horses, horses and finishers nested in races.
++ Good to practice SQL syntax
-- Not actually an efficient way to store data, as it cannot handle data hierarchy and is inflexible (esp. when new variables become available)