Use this notebook to read in sqlite database and export csv with basic features
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sqlite3
Load SQLite tables
In [3]:
with sqlite3.connect('/Users/mtetkosk/Google Drive/Fantasy Sports/Soccer/database.sqlite') as con:
countries = pd.read_sql_query("SELECT * from Country", con)
players = pd.read_sql_query("SELECT * FROM Player",con)
player_attributes = pd.read_sql_query("SELECT * FROM Player_Attributes",con)
team_attributes = pd.read_sql_query("SELECT * FROM Team_Attributes",con)
matches = pd.read_sql_query("SELECT * from Match", con)
leagues = pd.read_sql_query("SELECT * from League", con)
teams = pd.read_sql_query("SELECT * from Team", con)
Goal of Analysis - Predict total number of goals in English Premier League matches
In [5]:
#Filter teams and matches in English Premier League
epl_matches = matches[matches.league_id == 1729]
epl_team_ids = pd.DataFrame({'ID':(epl_matches['home_team_api_id'].unique())})
epl_teams = pd.merge(teams,epl_team_ids,how = 'inner', left_on = 'team_api_id', right_on = 'ID' )
epl_team_attributes = pd.merge(team_attributes, epl_team_ids, how = 'inner', left_on = 'team_api_id', right_on = 'ID')
In [6]:
# Write csv files
epl_matches.to_csv('/Users/mtetkosk/Google Drive/Data Science Projects/data/processed/EPL_matches.csv')
epl_teams.to_csv('/Users/mtetkosk/Google Drive/Data Science Projects/data/processed/EPL_teams.csv')
player_attributes.to_csv('/Users/mtetkosk/Google Drive/Data Science Projects/data/processed/Player_Attributes.csv')
players.to_csv('/Users/mtetkosk/Google Drive/Data Science Projects/data/processed/Players.csv')
epl_team_attributes.to_csv('/Users/mtetkosk/Google Drive/Data Science Projects/data/processed/EPL_team_attributes.csv')
In [ ]: