An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism. (Hawkins)
For some authors, outlier encompases anomalies and noise.
6 points total
3 points.
4 points.
2 points.
$D_t:=\frac{1}{|\mathcal{K}^Q|}\sum_{q\in\mathcal{K}^Q}{d_{q,p}}$
4 Points.
Only first three important for anomaly detection.
4 points. Mackey-Glass: Defined by a differential equation. Models physiological phenomena. Randomly generated: Each instance of each component taken from a normal distribution.
General case = any of the domains they're supposed to work in.
3 points.
4 points.
5 points.
[Agg13] Aggarwal, Charu C.: Outlier analysis. New York, NY : Springer, 2013. http://dx.doi.org/10.1007/978-1-4614-6396-2. http://dx.doi.org/10.1007/978-1-4614-6396-2. – ISBN 978–1–4614–6395–5
[AHHB09] Andreakis, Andreas ; Hoyningen-Huene, Nicolai v. ; Beetz, Michael: Incremental unsupervised time series analysis using merge growing neural gas. In: Advances in Self-Organizing Maps. Springer, 2009, S. 10–18
[APD05] Anstey, J ; Peters, D ; Dawson, Chris: Discovering novelty in time series data. In: Proceedings of the 15th annual newfoundland electrical and computer engineering conference Citeseer, 2005
[BCM +86] Baim, Donald S. ; Colucci, Wilson S. ; Monrad, E S. ; Smith, Harton S. ; Wright, Richard F. ; Lanoue, Alyce ; Gauthier, Diane F. ; Ransil, Bernard J. ; Grossman, William ; Braunwald, Eugene: Survival of patients with severe congestive heart failure treated with oral milrinone. In: Journal of the American College of Cardiology 7 (1986), Nr. 3, S. 661–670
[CBK09] Chandola, Varun ; Banerjee, Arindam ; Kumar, Vipin: Anomaly detection: A survey. In: ACM Computing Surveys (CSUR) 41 (2009), Nr. 3, S. 15
[Chi92] Chinchor, Nancy: MUC-4 Evaluation Metrics. In: Fourth Message Understanding Conference, 1992, 22–29
[CT93] Chappell, Geoffrey J. ; Taylor, John G.: The temporal Koh{ø}nen map. In: Neural networks 6 (1993), Nr. 3, S. 441–445
[DF] Dunning, Ted ; Friedman, Ellen: Practical Machine Learning: A New Look at Anomaly Detection. – ISBN 9781491904084
[EH11] Estevez´ , Pablo A. ; Hernandez´ , Rodrigo: Gamma-filter selforganizing neural networks for time series analysis. In: Advances in Self-Organizing Maps. Springer, 2011, S. 151–159
[Fri95] Fritzke, Bernd: A growing neural gas network learns topologies. In: Advances in neural information processing systems 7 (1995), S. 625–632
[Fri97] Fritzke, Bernd: A self-organizing network that can follow non-stationary distributions. In: Artificial Neural Networks—ICANN’97. Springer, 1997, S. 613–618
[GAG +] Goldberger, A L. ; Amaral, L A N. ; Glass, L ; Hausdorff, J M. ; Ivanov, P C. ; Mark, R G. ; Mietus, J E. ; Moody, G B.; Peng, C.-K. ; Stanley, H E.: {PhysioBank, PhysioToolkit, and PhysioNet}: Components of a New Research Resource for Complex Physiologic Signals. In: Circulation 101, Nr. 23, S. e215—-e220
[GGAH14a] Gupta, Manish ; Gao, Jing ; Aggarwal, Charu C. ; Han, Jiawei: Outlier Detection for Temporal Data. In: IEEE Transactions on Knowledge and Data Engineering 25 (2014), Nr. 1
[GGAH14b] Gupta, Manish ; Gao, Jing ; Aggarwal, Charu C. ; Han, Jiawei: Outlier Detection for Temporal Data : A Survey. 25 (2014), Nr. 1, S. 1–20
[HAD11a] Hawkins, Jeff ; Ahmad, Subutai ; Dubinsky, Donna: HIERARCHICAL TEMPORAL MEMORY including HTM Cortical Learning Algorithms. In: Whitepaper, Numenta Inc (2011). http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
[HAD11b] Hawkins, Jeff ; Ahmad, Subutai ; Dubinsky, Donna: The Science of Anomaly Detection: How HTM Enables Anomaly Detection in Streaming Data. 2011
[Haw80] Hawkins, Douglas M.: Identification of outliers. Bd. 11. Springer, 1980
[HER08] HERNANDEZ C´ ARCAMO´ , RODRIGO E.: Mapas temporales mediante redes neuronales auto-organizativas. (2008)
[HG06] Hawkins, Jeff ; George, Dileep: Hierarchical temporal memory: Concepts, theory and terminology. In: Whitepaper, Numenta Inc (2006)
[Hol02] Holmstrom¨ , Jim: Growing neural gas: Experiments with GNG, GNG with utility and supervised GNG. In: Master’s thesis, Uppsala University - (2002), S. –
[HST03] Hagenbuchner, Markus ; Sperduti, Alessandro ; Tsoi, Ah C.: A self-organizing map for adaptive processing of structured data. In: Neural Networks, IEEE Transactions on 14 (2003), Nr. 3, S. 491–505
[KLF05] Keogh, Eamonn ; Lin, Jessica ; Fu, Ada: Hot sax: Efficiently finding the most unusual time series subsequence. In: Data mining, fifth IEEE international conference on IEEE, 2005, S. 8—-pp
[Koh90] Kohonen, Teuvo: The self-organizing map. In: Proceedings of the IEEE 78 (1990), Nr. 9, S. 1464–1480
[LKLC03] Lin, Jessica ; Keogh, Eamonn ; Lonardi, Stefano ; Chiu, Bill: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery - DMKD ’03 (2003), 2. http://dx.doi.org/10.1145/882085. 882086. – DOI 10.1145/882085.882086
[MGO77] Mackey, Michael C. ; Glass, Leon ; Others: Oscillation and chaos in physiological control systems. In: Science 197 (1977), Nr. 4300, S. 287–289
[MS91] Martinetz, Thomas ; Schulten, Klaus: A” neural-gas” network learns topologies. University of Illinois at Urbana-Champaign, 1991
[NuP] Numenta Platform for Intelligent Computing (NuPIC). http://numenta.org/nupic.html
[OPF] Online Prediction Framework. https://github.com/numenta/nupic/wiki/Online-Prediction-Framework
[PP07] Patcha, Animesh ; Park, Jung-Min: An overview of anomaly detection techniques: Existing solutions and latest technological trends. In: Computer Networks 51 (2007), Nr. 12, S. 3448–3470
[Sas07] Sasaki, Yutaka: The truth of the F-measure. (2007)
[SH] Strickert, Marc ; Hammer, Barbara: Merge SOM for temporal data. , Nr. October 2004
[SH03] Strickert, Marc ; Hammer, Barbara: Neural gas for sequences. In: Proceedings of the Workshop on Self-Organizing Maps (WSOM’03) Citeseer, 2003, S. 53–57
[SHB05] Strickert, Marc ; Hammer, Barbara ; Blohm, Sebastian: Unsupervised recursive sequence processing. In: Neurocomputing 63 (2005), S. 69–97
[SNK12] Saaid, Fatimah ; Nur, Darfiana ; King, Robert: Change Points Detection of Vector Autoregressive Model using SDVAR Algorithm. (2012), Nr. February, S. 2–3
[TSK05] Tan, Pang-Ning ; Steinbach, Michael ; Kumar, Vipin: Introduction to Data Mining, Addison. 2005
[Voe02] Voegtlin, Thomas: Recursive self-organizing maps. In: Neural Networks 15 (2002), Nr. 8, S. 979–991
[WKL +05] Wei, Li ; Kumar, Nitin ; Lolla, Venkata N. ; Keogh, Eamonn ; Lonardi, Stefano ; Ratanamahatana, Chotirat (.: Assumption-Free Anomaly Detection in Time Series. In: SSDBM (2005). http://www.cs.ucr.edu/˜wli/publications/WeiL_AnomalyDetection.doc
[YT02] Yamanishi, Kenji ; Takeuchi, Jun-ichi: A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining ACM, 2002, S. 676–681
|
|
Example: credit card payment sequence
5, 6, 2, 3, 5, 89, 4, 6, 1, 2, 100, 90, 87, 88
Unsupervised detector assigns high scores to 89, 100, 100, 90, 87, 88
Supervised detector assigns anomaly class to 100, 90, 87, 88
$d_{\mathcal{X}, \mathcal{C}}(t,n) = (1 − \alpha) \cdot \|\mathbf{x}_t − \mathbf{w}_n\|^2 + \alpha \cdot \| \mathbf{C}_t − \mathbf{c}_n\|^2 (\mathbf{x}_t\in\mathcal{X}, \mathbf{C}_t\in\mathcal{C})$
$\mathbf{C}_{t+1}:=(1 − \beta) \cdot \mathbf{w}_r + \beta \cdot \mathbf{c}_r$
Set $age_{(r,s)}:=0$.
A MGNG-AD model D with time series input $\mathcal{X}$ of dimensionality $m$ and size $s$ is a tuple $D=(f,\omega,\mathcal{A},M^P,M^Q,j)$, where:
$M^P=(\mathcal{K}^P,\mathcal{E}^P,\mathcal{C}^P,\alpha^P,\beta^P,\gamma^P,\delta^P,\theta^P,\eta^P,\lambda^P,\epsilon^P_w,\epsilon^P_v)$
$M^Q=(\mathcal{K}^Q,\mathcal{E}^Q,\mathcal{C}^Q,\alpha^Q,\beta^Q,\gamma^Q,\delta^Q,\theta^Q,\eta^Q,\lambda^Q,\epsilon^Q_w,\epsilon^Q_v)$
$\frac{dx}{dt}=\beta x\frac{x_\tau}{1 +x^n_\tau}-\gamma x; \gamma, \beta, n > 0$
$mg_t := (mg1_t,mg2_t,mg3_t,mg4_t)$