In [ ]:
import os
import tqdm
In [ ]:
# --------------------------------
# -------- User input ------------
# --------------------------------
# Specify path to exported landmark data
lmpath = os.path.absolute('landmark.csv')
In [ ]:
# Load landmarks from csv
oldlm = pd.read_csv(lmpath)
We will sort landmark data according to stype and organize it in a two tiered dictionary according to sample type (s) and channel (c).
In [12]:
Dlm = {}
for stype in tqdm.tqdm(oldlm.stype.unique()):
# These two lines may need to be modified based on stype structure
s = stype.split('_')[0]
c = stype.split('_')[1]
# Add sample type dictionary if not already present
if s not in Dlm.keys():
Dlm[s] = {}
# Save sample specific landmark data to dictionary
Dlm[s][c] = oldlm[oldlm.stype==stype]