In [ ]:
from sklearn.datasets import load_boston
data = load_boston()
In [ ]:
print(data.DESCR)
In [ ]:
data.data[1]
In [ ]:
data.target[1]
In [ ]:
X = data.data
Y = data.target
In [ ]:
from sklearn.dummy import DummyRegressor
dummy_regr = DummyRegressor(strategy="median")
dummy_regr.fit(X, Y)
In [ ]:
from sklearn.metrics import mean_squared_error
mean_squared_error(Y, dummy_regr.predict(X))
In [ ]:
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, Y)
In [ ]:
mean_squared_error(Y, regr.predict(X))
In [1]:
from sklearn.svm import LinearSVR
# Step1: create an instance class as `regr`
# Step2: fit the data into class instance
In [ ]:
# score
mean_squared_error(Y, regr.predict(X))
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
In [ ]:
from sklearn.ensemble import RandomForestRegressor
# set random_state as zero
In [ ]:
# score
In [ ]:
In [ ]: