Tensorflow is an open source framework for machine learning specially for neural networks.
pip3 install tensorflow # CPU
pip3 install tensorflow-gpu # GPU
In [1]:
import tensorflow as tf
In [2]:
node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0) # also tf.float32 implicitly
print(node1, node2)
In [3]:
sess = tf.Session()
print(sess.run([node1, node2]))
In [4]:
node3 = tf.add(node1, node2)
print("node3:", node3)
print("sess.run(node3):", sess.run(node3))
In [5]:
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
In [6]:
print(sess.run(adder_node, {a: 3, b: 4.5}))
print(sess.run(adder_node, {a: [1, 3], b: [2, 4]}))
In [7]:
add_and_triple = adder_node * 3.
print(sess.run(add_and_triple, {a: 3, b: 4.5}))
In [18]:
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
x = tf.placeholder(tf.float32)
In [19]:
linear_model = W * x + b
In [20]:
# do this explicitly to initialize variables
init = tf.global_variables_initializer()
sess.run(init)
In [21]:
print(sess.run(linear_model, {x: [1, 2, 3, 4]}))
In [22]:
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas) # the loss (cost) function
print(sess.run(loss, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]}))
In [23]:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
In [28]:
sess.run(init) # reset values to incorrect defaults.
for i in range(1000):
sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})
cur_W, cur_b = sess.run([W, b])
print('W = %s\nb = %s' % (cur_W[0], cur_b[0]))