Example of taking 'views' from simulated populations


In [1]:
from __future__ import print_function
import fwdpy as fp
import pandas as pd
from background_selection_setup import *

Get the mutations that are segregating in each population:


In [2]:
mutations = [fp.view_mutations(i) for i in pops]

Look at the raw data in the first element of each list:


In [3]:
for i in mutations:
    print(i[0])


{'g': 9999, 'h': 1.0, 'neutral': False, 'pos': 1.2961536727380008, 's': -0.05000000074505806, 'label': 3, 'n': 1}
{'g': 9974, 'h': 0.0, 'neutral': True, 'pos': 0.3750512143597007, 's': 0.0, 'label': 1, 'n': 17}
{'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.802856310736388, 's': 0.0, 'label': 1, 'n': 1}
{'g': 9832, 'h': 0.0, 'neutral': True, 'pos': 0.3733968627639115, 's': 0.0, 'label': 1, 'n': 68}

Let's make that nicer, and convert each list of dictionaries to a Pandas DataFrame object:


In [4]:
mutations2 = [pd.DataFrame(i) for i in mutations]

In [5]:
for i in mutations2:
    print(i.head())


      g    h  label   n neutral       pos     s
0  9999  1.0      3   1   False  1.296154 -0.05
1  9999  0.0      1   1    True  0.808702  0.00
2  9985  0.0      1  20    True  0.851213  0.00
3  9997  1.0      2   1   False -0.743512 -0.05
4  9997  1.0      3   3   False  1.256208 -0.05
      g    h  label    n neutral       pos    s
0  9974  0.0      1   17    True  0.375051  0.0
1  9954  0.0      1   53    True  0.038241  0.0
2  9999  0.0      1    1    True  0.922048  0.0
3  9986  0.0      1   16    True  0.663966  0.0
4  9637  0.0      1  148    True  0.516812  0.0
      g    h  label   n neutral       pos     s
0  9999  0.0      1   1    True  0.802856  0.00
1  9987  1.0      3   2   False  1.719877 -0.05
2  9993  0.0      1  11    True  0.044257  0.00
3  9999  0.0      1   1    True  0.319559  0.00
4  9961  1.0      2  19   False -0.092556 -0.05
      g    h  label   n neutral       pos     s
0  9832  0.0      1  68    True  0.373397  0.00
1  9995  1.0      2   2   False -0.317365 -0.05
2  9998  1.0      3   1   False  1.072465 -0.05
3  9868  0.0      1  12    True  0.045664  0.00
4  9749  0.0      1  42    True  0.644652  0.00

The columns are:

  • g = the generation when the mutation first arose
  • h = the dominance
  • n = the number of copies of the mutation in the population. You can use this to get its frequency.
  • neutral = a boolean
  • pos = the position of the mutation
  • s = selection coefficient/effect size
  • label = The label assigned to a mutation. These labels can be associated with Regions and Sregions. Here, 1 is a mutation from the neutral region, 2 a selected mutation from the 'left' region and 3 a selected mutation from the 'right' regin.

We can do all the usual subsetting, etc., using regular pandas tricks. For example, let's get the neutral mutations for each population:


In [6]:
nmuts = [i[i.neutral == True] for i in mutations2]
for i in nmuts:
    print(i.head())


      g    h  label    n neutral       pos    s
1  9999  0.0      1    1    True  0.808702  0.0
2  9985  0.0      1   20    True  0.851213  0.0
5  9916  0.0      1   14    True  0.048614  0.0
6  7673  0.0      1  478    True  0.442744  0.0
8  9925  0.0      1    6    True  0.238877  0.0
      g    h  label    n neutral       pos    s
0  9974  0.0      1   17    True  0.375051  0.0
1  9954  0.0      1   53    True  0.038241  0.0
2  9999  0.0      1    1    True  0.922048  0.0
3  9986  0.0      1   16    True  0.663966  0.0
4  9637  0.0      1  148    True  0.516812  0.0
      g    h  label     n neutral       pos    s
0  9999  0.0      1     1    True  0.802856  0.0
2  9993  0.0      1    11    True  0.044257  0.0
3  9999  0.0      1     1    True  0.319559  0.0
5  8486  0.0      1   147    True  0.087042  0.0
7  8290  0.0      1  1786    True  0.359665  0.0
      g    h  label   n neutral       pos    s
0  9832  0.0      1  68    True  0.373397  0.0
3  9868  0.0      1  12    True  0.045664  0.0
4  9749  0.0      1  42    True  0.644652  0.0
5  9968  0.0      1  20    True  0.316820  0.0
6  9970  0.0      1   7    True  0.605128  0.0

We can also take views of gametes:


In [7]:
gametes = [fp.view_gametes(i) for i in pops]

The format is really ugly. v Each gamete is a dict with two elements:

  • 'neutral' is a list of mutations not affecting fitness. The format is the same as for the mutation views above.
  • 'selected' is a list of mutations that do affect fitness. The format is the same as for the mutation views above.

In [8]:
for i in gametes:
    print(i[0])


{'neutral': [{'g': 9999, 'h': 1.0, 'neutral': False, 'pos': 1.2961536727380008, 's': -0.05000000074505806, 'label': 3, 'n': 1}, {'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.8087020928505808, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9985, 'h': 0.0, 'neutral': True, 'pos': 0.8512128263246268, 's': 0.0, 'label': 1, 'n': 20}, {'g': 9997, 'h': 1.0, 'neutral': False, 'pos': -0.7435115049593151, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 9997, 'h': 1.0, 'neutral': False, 'pos': 1.2562080402858555, 's': -0.05000000074505806, 'label': 3, 'n': 3}, {'g': 9916, 'h': 0.0, 'neutral': True, 'pos': 0.04861398716457188, 's': 0.0, 'label': 1, 'n': 14}, {'g': 7673, 'h': 0.0, 'neutral': True, 'pos': 0.4427443742752075, 's': 0.0, 'label': 1, 'n': 478}, {'g': 9942, 'h': 1.0, 'neutral': False, 'pos': -0.6328390480484813, 's': -0.05000000074505806, 'label': 2, 'n': 9}, {'g': 9925, 'h': 0.0, 'neutral': True, 'pos': 0.23887674184516072, 's': 0.0, 'label': 1, 'n': 6}, {'g': 9992, 'h': 1.0, 'neutral': False, 'pos': 1.7460428576450795, 's': -0.05000000074505806, 'label': 3, 'n': 3}, {'g': 9951, 'h': 0.0, 'neutral': True, 'pos': 0.9244193523190916, 's': 0.0, 'label': 1, 'n': 9}, {'g': 9998, 'h': 0.0, 'neutral': True, 'pos': 0.40817153407260776, 's': 0.0, 'label': 1, 'n': 0}, {'g': 3901, 'h': 0.0, 'neutral': True, 'pos': 0.9496243973262608, 's': 0.0, 'label': 1, 'n': 1885}, {'g': 9987, 'h': 1.0, 'neutral': False, 'pos': -0.8368993068579584, 's': -0.05000000074505806, 'label': 2, 'n': 5}, {'g': 7838, 'h': 0.0, 'neutral': True, 'pos': 0.4856802138965577, 's': 0.0, 'label': 1, 'n': 479}, {'g': 9999, 'h': 1.0, 'neutral': False, 'pos': -0.08335124771110713, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 9993, 'h': 1.0, 'neutral': False, 'pos': 1.1813256666064262, 's': -0.05000000074505806, 'label': 3, 'n': 8}, {'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.9340733217541128, 's': 0.0, 'label': 1, 'n': 1}, {'g': 8617, 'h': 0.0, 'neutral': True, 'pos': 0.655554321128875, 's': 0.0, 'label': 1, 'n': 121}, {'g': 9997, 'h': 1.0, 'neutral': False, 'pos': -0.04492441425099969, 's': -0.05000000074505806, 'label': 2, 'n': 0}, {'g': 9994, 'h': 1.0, 'neutral': False, 'pos': 1.5325499204918742, 's': -0.05000000074505806, 'label': 3, 'n': 2}], 'selected': [{'g': 9999, 'h': 1.0, 'neutral': False, 'pos': 1.2961536727380008, 's': -0.05000000074505806, 'label': 3, 'n': 1}], 'n': 1}
{'neutral': [{'g': 9974, 'h': 0.0, 'neutral': True, 'pos': 0.3750512143597007, 's': 0.0, 'label': 1, 'n': 17}, {'g': 9954, 'h': 0.0, 'neutral': True, 'pos': 0.03824054426513612, 's': 0.0, 'label': 1, 'n': 53}, {'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.9220477596390992, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9986, 'h': 0.0, 'neutral': True, 'pos': 0.663966491818428, 's': 0.0, 'label': 1, 'n': 16}, {'g': 9637, 'h': 0.0, 'neutral': True, 'pos': 0.5168115310370922, 's': 0.0, 'label': 1, 'n': 148}, {'g': 9983, 'h': 1.0, 'neutral': False, 'pos': -0.843893475830555, 's': -0.05000000074505806, 'label': 2, 'n': 24}, {'g': 9989, 'h': 0.0, 'neutral': True, 'pos': 0.290936284000054, 's': 0.0, 'label': 1, 'n': 8}, {'g': 9996, 'h': 0.0, 'neutral': True, 'pos': 0.32976379804313183, 's': 0.0, 'label': 1, 'n': 0}, {'g': 9976, 'h': 1.0, 'neutral': False, 'pos': -0.5398803392890841, 's': -0.05000000074505806, 'label': 2, 'n': 0}, {'g': 9992, 'h': 0.0, 'neutral': True, 'pos': 0.6648217977490276, 's': 0.0, 'label': 1, 'n': 6}, {'g': 9998, 'h': 1.0, 'neutral': False, 'pos': 1.7505667991936207, 's': -0.05000000074505806, 'label': 3, 'n': 0}, {'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.27948754257522523, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9981, 'h': 1.0, 'neutral': False, 'pos': -0.9285198170691729, 's': -0.05000000074505806, 'label': 2, 'n': 5}, {'g': 8751, 'h': 0.0, 'neutral': True, 'pos': 0.5460440656170249, 's': 0.0, 'label': 1, 'n': 216}, {'g': 9986, 'h': 1.0, 'neutral': False, 'pos': 1.4597016391344368, 's': -0.05000000074505806, 'label': 3, 'n': 8}], 'selected': [], 'n': 15}
{'neutral': [{'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.802856310736388, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9987, 'h': 1.0, 'neutral': False, 'pos': 1.7198766963556409, 's': -0.05000000074505806, 'label': 3, 'n': 2}, {'g': 9993, 'h': 0.0, 'neutral': True, 'pos': 0.044257442466914654, 's': 0.0, 'label': 1, 'n': 11}, {'g': 9999, 'h': 0.0, 'neutral': True, 'pos': 0.31955947587266564, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9961, 'h': 1.0, 'neutral': False, 'pos': -0.09255639626644552, 's': -0.05000000074505806, 'label': 2, 'n': 19}, {'g': 8486, 'h': 0.0, 'neutral': True, 'pos': 0.08704224601387978, 's': 0.0, 'label': 1, 'n': 147}, {'g': 9988, 'h': 1.0, 'neutral': False, 'pos': -0.6743454595562071, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 8290, 'h': 0.0, 'neutral': True, 'pos': 0.3596646406222135, 's': 0.0, 'label': 1, 'n': 1786}, {'g': 9996, 'h': 1.0, 'neutral': False, 'pos': 1.1176744250115007, 's': -0.05000000074505806, 'label': 3, 'n': 0}, {'g': 9999, 'h': 1.0, 'neutral': False, 'pos': -0.6342870420776308, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 8881, 'h': 0.0, 'neutral': True, 'pos': 0.5442884352523834, 's': 0.0, 'label': 1, 'n': 1581}, {'g': 9993, 'h': 0.0, 'neutral': True, 'pos': 0.9674568464979529, 's': 0.0, 'label': 1, 'n': 4}, {'g': 9999, 'h': 1.0, 'neutral': False, 'pos': -0.8462745684664696, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 9999, 'h': 1.0, 'neutral': False, 'pos': -0.11604839516803622, 's': -0.05000000074505806, 'label': 2, 'n': 1}, {'g': 9997, 'h': 1.0, 'neutral': False, 'pos': -0.45378030952997506, 's': -0.05000000074505806, 'label': 2, 'n': 0}, {'g': 9992, 'h': 0.0, 'neutral': True, 'pos': 0.16772447689436376, 's': 0.0, 'label': 1, 'n': 5}, {'g': 9884, 'h': 0.0, 'neutral': True, 'pos': 0.2799046675208956, 's': 0.0, 'label': 1, 'n': 17}, {'g': 9864, 'h': 0.0, 'neutral': True, 'pos': 0.9488759697414935, 's': 0.0, 'label': 1, 'n': 36}, {'g': 9998, 'h': 0.0, 'neutral': True, 'pos': 0.48674530582502484, 's': 0.0, 'label': 1, 'n': 1}, {'g': 9995, 'h': 1.0, 'neutral': False, 'pos': 1.7994547698181123, 's': -0.05000000074505806, 'label': 3, 'n': 4}], 'selected': [], 'n': 19}
{'neutral': [{'g': 9832, 'h': 0.0, 'neutral': True, 'pos': 0.3733968627639115, 's': 0.0, 'label': 1, 'n': 68}, {'g': 9995, 'h': 1.0, 'neutral': False, 'pos': -0.31736462796106935, 's': -0.05000000074505806, 'label': 2, 'n': 2}, {'g': 9998, 'h': 1.0, 'neutral': False, 'pos': 1.072465442121029, 's': -0.05000000074505806, 'label': 3, 'n': 1}, {'g': 9868, 'h': 0.0, 'neutral': True, 'pos': 0.04566416423767805, 's': 0.0, 'label': 1, 'n': 12}, {'g': 9749, 'h': 0.0, 'neutral': True, 'pos': 0.6446520905010402, 's': 0.0, 'label': 1, 'n': 42}, {'g': 9968, 'h': 0.0, 'neutral': True, 'pos': 0.31681952835060656, 's': 0.0, 'label': 1, 'n': 20}, {'g': 9970, 'h': 0.0, 'neutral': True, 'pos': 0.6051280729006976, 's': 0.0, 'label': 1, 'n': 7}, {'g': 9992, 'h': 1.0, 'neutral': False, 'pos': 1.4546588633675128, 's': -0.05000000074505806, 'label': 3, 'n': 2}, {'g': 9998, 'h': 0.0, 'neutral': True, 'pos': 0.2997995924670249, 's': 0.0, 'label': 1, 'n': 2}, {'g': 9997, 'h': 1.0, 'neutral': False, 'pos': 1.260333125013858, 's': -0.05000000074505806, 'label': 3, 'n': 5}, {'g': 9989, 'h': 1.0, 'neutral': False, 'pos': 1.2523613322991878, 's': -0.05000000074505806, 'label': 3, 'n': 9}, {'g': 9992, 'h': 1.0, 'neutral': False, 'pos': 1.2467866179067641, 's': -0.05000000074505806, 'label': 3, 'n': 1}, {'g': 8760, 'h': 0.0, 'neutral': True, 'pos': 0.5242203767411411, 's': 0.0, 'label': 1, 'n': 63}], 'selected': [], 'n': 11}

OK, let's clean that up. We'll focus on the selected mutations for each individual, and turn everything into a pd.DataFrame.

We're only going to do this for the first simulated population.


In [9]:
smuts = [i['selected'] for i in gametes[0]]

We now have a list of lists stored in 'smuts'.


In [10]:
smutsdf = pd.DataFrame()
ind=0
##Add the non-empty individuals to the df
for i in smuts:
    if len(i)>0:
        smutsdf = pd.concat([smutsdf,pd.DataFrame(i,index=[ind]*len(i))])
    ind += 1

In [11]:
smutsdf.head()


Out[11]:
g h label n neutral pos s
0 9999 1.0 3 1 False 1.296154 -0.05
3 9999 1.0 3 1 False 1.296154 -0.05
6 9999 1.0 3 1 False 1.296154 -0.05
8 9999 1.0 3 1 False 1.296154 -0.05
10 9999 1.0 3 1 False 1.296154 -0.05

That's much better. We can use the index to figure out which individual has which mutations, and their effect sizes, etc.

Finally, we can also take views of diploids. Let's get the first two diploids in each population:


In [12]:
dips = [fp.view_diploids(i,[0,1]) for i in pops]

Again, the format here is ugly. Each diploid view is a dictionary:


In [13]:
for key in dips[0][0]:
    print(key)


sh0
sh1
e
g
w
n0
n1
chrom1
chrom0

The values are:

  • chrom0, chrom1 are gamete views, just like what we dealt with above
  • g = genetic component of phenotype
  • e = random component of phenotype
  • w = fitness
  • n0 and n1 are the number of selected variants on chrom0 and chrom1, respectively.
  • sh0 and sh1 are the sum of $s \times h$ for all selected mutations on chrom0 and chrom1, respectively

Please note that g, e, and w, may or may not be set by a particular simulation. Their use is optional.