In [ ]:
%matplotlib inline
Compute peak localisation error and spatial deviation for the point-spread functions of dSPM and MNE. Plot their distributions and difference of distributions. This example mimics some results from [1]_, namely Figure 3 (peak localisation error for PSFs, L2-MNE vs dSPM) and Figure 4 (spatial deviation for PSFs, L2-MNE vs dSPM). It shows that combining MEG with EEG reduces the point-spread function and increases the spatial resolution of source imaging, especially for deeper sources.
In [ ]:
# Author: Olaf Hauk <olaf.hauk@mrc-cbu.cam.ac.uk>
#
# License: BSD (3-clause)
import mne
from mne.datasets import sample
from mne.minimum_norm.resolution_matrix import make_inverse_resolution_matrix
from mne.minimum_norm.spatial_resolution import resolution_metrics
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path + '/subjects/'
fname_fwd_emeg = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif'
fname_evo = data_path + '/MEG/sample/sample_audvis-ave.fif'
# read forward solution with EEG and MEG
forward_emeg = mne.read_forward_solution(fname_fwd_emeg)
# forward operator with fixed source orientations
forward_emeg = mne.convert_forward_solution(forward_emeg, surf_ori=True,
force_fixed=True)
# create a forward solution with MEG only
forward_meg = mne.pick_types_forward(forward_emeg, meg=True, eeg=False)
# noise covariance matrix
noise_cov = mne.read_cov(fname_cov)
# evoked data for info
evoked = mne.read_evokeds(fname_evo, 0)
# make inverse operator from forward solution for MEG and EEGMEG
inv_emeg = mne.minimum_norm.make_inverse_operator(
info=evoked.info, forward=forward_emeg, noise_cov=noise_cov, loose=0.,
depth=None)
inv_meg = mne.minimum_norm.make_inverse_operator(
info=evoked.info, forward=forward_meg, noise_cov=noise_cov, loose=0.,
depth=None)
# regularisation parameter
snr = 3.0
lambda2 = 1.0 / snr ** 2
In [ ]:
rm_emeg = make_inverse_resolution_matrix(forward_emeg, inv_emeg,
method='MNE', lambda2=lambda2)
ple_psf_emeg = resolution_metrics(rm_emeg, inv_emeg['src'],
function='psf', metric='peak_err')
sd_psf_emeg = resolution_metrics(rm_emeg, inv_emeg['src'],
function='psf', metric='sd_ext')
del rm_emeg
In [ ]:
rm_meg = make_inverse_resolution_matrix(forward_meg, inv_meg,
method='MNE', lambda2=lambda2)
ple_psf_meg = resolution_metrics(rm_meg, inv_meg['src'],
function='psf', metric='peak_err')
sd_psf_meg = resolution_metrics(rm_meg, inv_meg['src'],
function='psf', metric='sd_ext')
del rm_meg
In [ ]:
brain_ple_emeg = ple_psf_emeg.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=1,
clim=dict(kind='value', lims=(0, 2, 4)))
brain_ple_emeg.add_text(0.1, 0.9, 'PLE PSF EMEG', 'title', font_size=16)
brain_ple_meg = ple_psf_meg.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=2,
clim=dict(kind='value', lims=(0, 2, 4)))
brain_ple_meg.add_text(0.1, 0.9, 'PLE PSF MEG', 'title', font_size=16)
# Subtract the two distributions and plot this difference
diff_ple = ple_psf_emeg - ple_psf_meg
brain_ple_diff = diff_ple.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=3,
clim=dict(kind='value', pos_lims=(0., .5, 1.)),
smoothing_steps=20)
brain_ple_diff.add_text(0.1, 0.9, 'PLE EMEG-MEG', 'title', font_size=16)
These plots show that with respect to peak localization error, adding EEG to MEG does not bring much benefit. Next let's visualise spatial deviation (SD) across the whole cortex for PSF:
In [ ]:
brain_sd_emeg = sd_psf_emeg.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=4,
clim=dict(kind='value', lims=(0, 2, 4)))
brain_sd_emeg.add_text(0.1, 0.9, 'SD PSF EMEG', 'title', font_size=16)
brain_sd_meg = sd_psf_meg.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=5,
clim=dict(kind='value', lims=(0, 2, 4)))
brain_sd_meg.add_text(0.1, 0.9, 'SD PSF MEG', 'title', font_size=16)
# Subtract the two distributions and plot this difference
diff_sd = sd_psf_emeg - sd_psf_meg
brain_sd_diff = diff_sd.plot('sample', 'inflated', 'lh',
subjects_dir=subjects_dir, figure=6,
clim=dict(kind='value', pos_lims=(0., .5, 1.)),
smoothing_steps=20)
brain_sd_diff.add_text(0.1, 0.9, 'SD EMEG-MEG', 'title', font_size=16)
Adding EEG to MEG decreases the spatial extent of point-spread functions (lower spatial deviation, blue colors), thus increasing resolution, especially for deeper source locations.
.. [1] Hauk O, Stenroos M, Treder M (2019). "Towards an Objective Evaluation of EEG/MEG Source Estimation Methods: The Linear Tool Kit", bioRxiv, doi: https://doi.org/10.1101/672956.