In [ ]:
%matplotlib inline
In [ ]:
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)
import mne
from mne.datasets import sample
from mne.minimum_norm import read_inverse_operator
from mne.viz import set_3d_view
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path + '/subjects'
fname_trans = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'
inv_fname = data_path
inv_fname += '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
inv = read_inverse_operator(inv_fname)
print("Method: %s" % inv['methods'])
print("fMRI prior: %s" % inv['fmri_prior'])
print("Number of sources: %s" % inv['nsource'])
print("Number of channels: %s" % inv['nchan'])
src = inv['src'] # get the source space
# Get access to the triangulation of the cortex
print("Number of vertices on the left hemisphere: %d" % len(src[0]['rr']))
print("Number of triangles on left hemisphere: %d" % len(src[0]['use_tris']))
print("Number of vertices on the right hemisphere: %d" % len(src[1]['rr']))
print("Number of triangles on right hemisphere: %d" % len(src[1]['use_tris']))
Show result on 3D source space
In [ ]:
fig = mne.viz.plot_alignment(subject='sample', subjects_dir=subjects_dir,
trans=fname_trans, surfaces='white', src=src)
set_3d_view(fig, focalpoint=(0., 0., 0.06))