In [ ]:
%matplotlib inline

Compute source power estimate by projecting the covariance with MNE

We can apply the MNE inverse operator to a covariance matrix to obtain an estimate of source power. This is computationally more efficient than first estimating the source timecourses and then computing their power.


In [ ]:
# Author: Denis A. Engemann <denis-alexander.engemann@inria.fr>
#         Luke Bloy <luke.bloy@gmail.com>
#
# License: BSD (3-clause)

import os.path as op
import numpy as np

import mne
from mne.datasets import sample
from mne.minimum_norm import make_inverse_operator, apply_inverse_cov

data_path = sample.data_path()
subjects_dir = data_path + '/subjects'
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname)

Compute empty-room covariance

First we compute an empty-room covariance, which captures noise from the sensors and environment.


In [ ]:
raw_empty_room_fname = op.join(
    data_path, 'MEG', 'sample', 'ernoise_raw.fif')
raw_empty_room = mne.io.read_raw_fif(raw_empty_room_fname)
raw_empty_room.crop(0, 60)
raw_empty_room.info['bads'] = ['MEG 2443']
raw_empty_room.info['projs'] = raw.info['projs']
noise_cov = mne.compute_raw_covariance(
    raw_empty_room, method=['empirical', 'shrunk'])
del raw_empty_room

Epoch the data


In [ ]:
raw.info['bads'] = ['MEG 2443', 'EEG 053']
raw.load_data().filter(4, 12)
events = mne.find_events(raw, stim_channel='STI 014')
event_id = dict(aud_l=1, aud_r=2, vis_l=3, vis_r=4)
tmin, tmax = -0.2, 0.5
baseline = (None, 0)  # means from the first instant to t = 0
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
epochs = mne.Epochs(raw.copy().filter(4, 12), events, event_id, tmin, tmax,
                    proj=True, picks=('meg', 'eog'), baseline=None,
                    reject=reject, preload=True)
del raw

Compute and plot covariances

In addition to the empty-room covariance above, we compute two additional covariances:

  1. Baseline covariance, which captures signals not of interest in our analysis (e.g., sensor noise, environmental noise, physiological artifacts, and also resting-state-like brain activity / "noise").
  2. Data covariance, which captures our activation of interest (in addition to noise sources).

In [ ]:
base_cov = mne.compute_covariance(
    epochs, tmin=-0.2, tmax=0, method=['shrunk', 'empirical'], rank=None,
    verbose=True)
data_cov = mne.compute_covariance(
    epochs, tmin=0., tmax=0.2, method=['shrunk', 'empirical'], rank=None,
    verbose=True)

fig_noise_cov = mne.viz.plot_cov(noise_cov, epochs.info, show_svd=False)
fig_base_cov = mne.viz.plot_cov(base_cov, epochs.info, show_svd=False)
fig_data_cov = mne.viz.plot_cov(data_cov, epochs.info, show_svd=False)

We can also look at the covariances using topomaps, here we just show the baseline and data covariances, followed by the data covariance whitened by the baseline covariance:


In [ ]:
evoked = epochs.average().pick('meg')
evoked.drop_channels(evoked.info['bads'])
evoked.plot(time_unit='s')
evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag',
                    time_unit='s')

evoked_noise_cov = mne.EvokedArray(data=np.diag(noise_cov['data'])[:, None],
                                   info=evoked.info)
evoked_data_cov = mne.EvokedArray(data=np.diag(data_cov['data'])[:, None],
                                  info=evoked.info)
evoked_data_cov_white = mne.whiten_evoked(evoked_data_cov, noise_cov)


def plot_cov_diag_topomap(evoked, ch_type='grad'):
    evoked.plot_topomap(
        ch_type=ch_type, times=[0],
        vmin=np.min, vmax=np.max, cmap='viridis',
        units=dict(mag='None', grad='None'),
        scalings=dict(mag=1, grad=1),
        cbar_fmt=None)


plot_cov_diag_topomap(evoked_noise_cov, 'grad')
plot_cov_diag_topomap(evoked_data_cov, 'grad')
plot_cov_diag_topomap(evoked_data_cov_white, 'grad')

Apply inverse operator to covariance

Finally, we can construct an inverse using the empty-room noise covariance:


In [ ]:
# Read the forward solution and compute the inverse operator
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif'
fwd = mne.read_forward_solution(fname_fwd)

# make an MEG inverse operator
info = evoked.info
inverse_operator = make_inverse_operator(info, fwd, noise_cov,
                                         loose=0.2, depth=0.8)

Project our data and baseline covariance to source space:


In [ ]:
stc_data = apply_inverse_cov(data_cov, evoked.info, inverse_operator,
                             nave=len(epochs), method='dSPM', verbose=True)
stc_base = apply_inverse_cov(base_cov, evoked.info, inverse_operator,
                             nave=len(epochs), method='dSPM', verbose=True)

And visualize power is relative to the baseline:


In [ ]:
stc_data /= stc_base
brain = stc_data.plot(subject='sample', subjects_dir=subjects_dir,
                      clim=dict(kind='percent', lims=(50, 90, 98)))