In [ ]:
%matplotlib inline
SourceEstimate <mne.SourceEstimate>
data structureSource estimates, commonly referred to as STC (Source Time Courses), are obtained from source localization methods. Source localization method solve the so-called 'inverse problem'. MNE provides different methods for solving it: dSPM, sLORETA, LCMV, MxNE etc.
Source localization consists in projecting the EEG/MEG sensor data into a 3-dimensional 'source space' positioned in the individual subject's brain anatomy. Hence the data is transformed such that the recorded time series at each sensor location maps to time series at each spatial location of the 'source space' where is defined our source estimates.
An STC object contains the amplitudes of the sources over time.
It only stores the amplitudes of activations but
not the locations of the sources. To get access to the locations
you need to have the :class:source space <mne.SourceSpaces>
(often abbreviated src
) used to compute the
:class:forward operator <mne.Forward>
(often abbreviated fwd
).
See tut-forward
for more details on forward modeling, and
tut-inverse-methods
for an example of source localization with dSPM, sLORETA or eLORETA.
Source estimates come in different forms:
- :class:`mne.SourceEstimate`: For cortically constrained source spaces.
- :class:`mne.VolSourceEstimate`: For volumetric source spaces
- :class:`mne.VectorSourceEstimate`: For cortically constrained source
spaces with vector-valued source activations (strength and orientation)
- :class:`mne.MixedSourceEstimate`: For source spaces formed of a
combination of cortically constrained and volumetric sources.
:class:`(Vector)
Let's get ourselves an idea of what a :class:mne.SourceEstimate
really
is. We first set up the environment and load some data:
In [ ]:
import os
from mne import read_source_estimate
from mne.datasets import sample
print(__doc__)
# Paths to example data
sample_dir_raw = sample.data_path()
sample_dir = os.path.join(sample_dir_raw, 'MEG', 'sample')
subjects_dir = os.path.join(sample_dir_raw, 'subjects')
fname_stc = os.path.join(sample_dir, 'sample_audvis-meg')
This data set contains source estimation data from an audio visual task. It
has been mapped onto the inflated cortical surface representation obtained
from FreeSurfer <tut-freesurfer>
using the dSPM method. It highlights a noticeable peak in the auditory
cortices.
Let's see how it looks like.
In [ ]:
stc = read_source_estimate(fname_stc, subject='sample')
# Define plotting parameters
surfer_kwargs = dict(
hemi='lh', subjects_dir=subjects_dir,
clim=dict(kind='value', lims=[8, 12, 15]), views='lateral',
initial_time=0.09, time_unit='s', size=(800, 800),
smoothing_steps=5)
# Plot surface
brain = stc.plot(**surfer_kwargs)
# Add title
brain.add_text(0.1, 0.9, 'SourceEstimate', 'title', font_size=16)
A source estimate contains the time series of a activations at spatial locations defined by the source space. In the context of a FreeSurfer surfaces - which consist of 3D triangulations
stc.data
.Let's have a look at the shape
In [ ]:
shape = stc.data.shape
print('The data has %s vertex locations with %s sample points each.' % shape)
We see that stc carries 7498 time series of 25 samples length. Those time series belong to 7498 vertices, which in turn represent locations on the cortical surface. So where do those vertex values come from?
FreeSurfer separates both hemispheres and creates surfaces
representation for left and right hemisphere. Indices to surface locations
are stored in stc.vertices
. This is a list with two arrays of integers,
that index a particular vertex of the FreeSurfer mesh. A value of 42 would
hence map to the x,y,z coordinates of the mesh with index 42.
See next section on how to get access to the positions in a
:class:mne.SourceSpaces
object.
Since both hemispheres are always represented separately, both attributes
introduced above, can also be obtained by selecting the respective
hemisphere. This is done by adding the correct prefix (lh
or rh
).
In [ ]:
shape_lh = stc.lh_data.shape
print('The left hemisphere has %s vertex locations with %s sample points each.'
% shape_lh)
Since we did not change the time representation, only the selected subset of
vertices and hence only the row size of the matrix changed. We can check if
the rows of stc.lh_data
and stc.rh_data
sum up to the value we had
before.
In [ ]:
is_equal = stc.lh_data.shape[0] + stc.rh_data.shape[0] == stc.data.shape[0]
print('The number of vertices in stc.lh_data and stc.rh_data do ' +
('not ' if not is_equal else '') +
'sum up to the number of rows in stc.data')
Indeed and as the mindful reader already suspected, the same can be said
about vertices. stc.lh_vertno
thereby maps to the left and
stc.rh_vertno
to the right inflated surface representation of
FreeSurfer.
As mentioned above, :class:src <mne.SourceSpaces>
carries the mapping from
stc to the surface. The surface is built up from a
triangulated mesh <https://en.wikipedia.org/wiki/Surface_triangulation>
_
for each hemisphere. Each triangle building up a face consists of 3 vertices.
Since src is a list of two source spaces (left and right hemisphere), we can
access the respective data by selecting the source space first. Faces
building up the left hemisphere can be accessed via src[0]['tris']
, where
the index $0$ stands for the left and $1$ for the right
hemisphere.
The values in src[0]['tris'] refer to row indices in src[0]['rr']
.
Here we find the actual coordinates of the surface mesh. Hence every index
value for vertices will select a coordinate from here. Furthermore
src[0]['vertno']
stores the same data as stc.lh_vertno
,
except when working with sparse solvers such as
:func:mne.inverse_sparse.mixed_norm
, as then only a fraction of
vertices actually have non-zero activations.
In other words stc.lh_vertno
equals src[0]['vertno']
, whereas
stc.rh_vertno
equals src[1]['vertno']
. Thus the Nth time series in
stc.lh_data corresponds to the Nth value in stc.lh_vertno and
src[0]['vertno'] respectively, which in turn map the time series to a
specific location on the surface, represented as the set of cartesian
coordinates stc.lh_vertno[N]
in src[0]['rr']
.
Let's obtain the peak amplitude of the data as vertex and time point index
In [ ]:
peak_vertex, peak_time = stc.get_peak(hemi='lh', vert_as_index=True,
time_as_index=True)
The first value thereby indicates which vertex and the second which time
point index from within stc.lh_vertno
or stc.lh_data
is used. We can
use the respective information to get the index of the surface vertex
resembling the peak and its value.
In [ ]:
peak_vertex_surf = stc.lh_vertno[peak_vertex]
peak_value = stc.lh_data[peak_vertex, peak_time]
Let's visualize this as well, using the same surfer_kwargs
as in the
beginning.
In [ ]:
brain = stc.plot(**surfer_kwargs)
# We add the new peak coordinate (as vertex index) as an annotation dot
brain.add_foci(peak_vertex_surf, coords_as_verts=True, hemi='lh', color='blue')
# We add a title as well, stating the amplitude at this time and location
brain.add_text(0.1, 0.9, 'Peak coordinate', 'title', font_size=14)
:class:stc <mne.SourceEstimate>
is a class of MNE-Python, representing the
transformed time series obtained from source estimation. For both hemispheres
the data is stored separately in stc.lh_data
and stc.rh_data
in form
of a $m \times n$ matrix, where $m$ is the number of spatial
locations belonging to that hemisphere and $n$ the number of time
points.
stc.lh_vertno
and stc.rh_vertno
correspond to src[0]['vertno']
and src[1]['vertno']
. Those are the indices of locations on the surface
representation.
The surface's mesh coordinates are stored in src[0]['rr']
and
src[1]['rr']
for left and right hemisphere. 3D coordinates can be
accessed by the above logic::
lh_coordinates = src[0]['rr'][stc.lh_vertno] lh_data = stc.lh_data
or::
rh_coordinates = src[1]['rr'][src[1]['vertno']] rh_data = stc.rh_data