In [ ]:
%matplotlib inline

Compute source power using DICS beamfomer

Compute a Dynamic Imaging of Coherent Sources (DICS) [1]_ filter from single-trial activity to estimate source power across a frequency band.

References

.. [1] Gross et al. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. PNAS (2001) vol. 98 (2) pp. 694-699


In [ ]:
# Author: Marijn van Vliet <w.m.vanvliet@gmail.com>
#         Roman Goj <roman.goj@gmail.com>
#         Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
import mne
from mne.datasets import sample
from mne.time_frequency import csd_morlet
from mne.beamformer import make_dics, apply_dics_csd

print(__doc__)

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
subjects_dir = data_path + '/subjects'

Reading the raw data:


In [ ]:
raw = mne.io.read_raw_fif(raw_fname)
raw.info['bads'] = ['MEG 2443']  # 1 bad MEG channel

# Set picks
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                       stim=False, exclude='bads')

# Read epochs
event_id, tmin, tmax = 1, -0.2, 0.5
events = mne.read_events(event_fname)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=(None, 0), preload=True,
                    reject=dict(grad=4000e-13, mag=4e-12))
evoked = epochs.average()

# Read forward operator
forward = mne.read_forward_solution(fname_fwd)

Computing the cross-spectral density matrix at 4 evenly spaced frequencies from 6 to 10 Hz. We use a decim value of 20 to speed up the computation in this example at the loss of accuracy.

Warning

The use of several sensor types with the DICS beamformer is not heavily tested yet. Here we use verbose='error' to suppress a warning along these lines.


In [ ]:
csd = csd_morlet(epochs, tmin=0, tmax=0.5, decim=20,
                 frequencies=np.linspace(6, 10, 4),
                 n_cycles=2.5)  # short signals, must live with few cycles

# Compute DICS spatial filter and estimate source power.
filters = make_dics(epochs.info, forward, csd, reg=0.5, verbose='error')
print(filters)
stc, freqs = apply_dics_csd(csd, filters)

message = 'DICS source power in the 8-12 Hz frequency band'
brain = stc.plot(surface='inflated', hemi='rh', subjects_dir=subjects_dir,
                 time_label=message)