In [ ]:
%matplotlib inline

Compute mixed source space connectivity and visualize it using a circular graph

This example computes the all-to-all connectivity between 75 regions in a mixed source space based on dSPM inverse solutions and a FreeSurfer cortical parcellation. The connectivity is visualized using a circular graph which is ordered based on the locations of the regions.


In [ ]:
# Author: Annalisa Pascarella <a.pascarella@iac.cnr.it>
#
# License: BSD (3-clause)

import os.path as op
import numpy as np
import mne
import matplotlib.pyplot as plt

from mne.datasets import sample
from mne import setup_volume_source_space, setup_source_space
from mne import make_forward_solution
from mne.io import read_raw_fif
from mne.minimum_norm import make_inverse_operator, apply_inverse_epochs
from mne.connectivity import spectral_connectivity
from mne.viz import circular_layout, plot_connectivity_circle

# Set dir
data_path = sample.data_path()
subject = 'sample'
data_dir = op.join(data_path, 'MEG', subject)
subjects_dir = op.join(data_path, 'subjects')
bem_dir = op.join(subjects_dir, subject, 'bem')

# Set file names
fname_aseg = op.join(subjects_dir, subject, 'mri', 'aseg.mgz')

fname_model = op.join(bem_dir, '%s-5120-bem.fif' % subject)
fname_bem = op.join(bem_dir, '%s-5120-bem-sol.fif' % subject)

fname_raw = data_dir + '/sample_audvis_filt-0-40_raw.fif'
fname_trans = data_dir + '/sample_audvis_raw-trans.fif'
fname_cov = data_dir + '/ernoise-cov.fif'
fname_event = data_dir + '/sample_audvis_filt-0-40_raw-eve.fif'

# List of sub structures we are interested in. We select only the
# sub structures we want to include in the source space
labels_vol = ['Left-Amygdala',
              'Left-Thalamus-Proper',
              'Left-Cerebellum-Cortex',
              'Brain-Stem',
              'Right-Amygdala',
              'Right-Thalamus-Proper',
              'Right-Cerebellum-Cortex']

# Setup a surface-based source space
src = setup_source_space(subject, subjects_dir=subjects_dir,
                         spacing='oct6', add_dist=False)

# Setup a volume source space
# set pos=7.0 for speed issue
vol_src = setup_volume_source_space(subject, mri=fname_aseg,
                                    pos=7.0,
                                    bem=fname_model,
                                    volume_label=labels_vol,
                                    subjects_dir=subjects_dir)
# Generate the mixed source space
src += vol_src

# compute the fwd matrix
fwd = make_forward_solution(fname_raw, fname_trans, src, fname_bem,
                            mindist=5.0,  # ignore sources<=5mm from innerskull
                            meg=True, eeg=False,
                            n_jobs=1)

# Load data
raw = read_raw_fif(fname_raw, preload=True)
noise_cov = mne.read_cov(fname_cov)
events = mne.read_events(fname_event)

# Add a bad channel
raw.info['bads'] += ['MEG 2443']

# Pick MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
                       exclude='bads')

# Define epochs for left-auditory condition
event_id, tmin, tmax = 1, -0.2, 0.5
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(mag=4e-12, grad=4000e-13,
                                                    eog=150e-6))

# Compute inverse solution and for each epoch
snr = 1.0           # use smaller SNR for raw data
inv_method = 'dSPM'
parc = 'aparc'      # the parcellation to use, e.g., 'aparc' 'aparc.a2009s'

lambda2 = 1.0 / snr ** 2

# Compute inverse operator
inverse_operator = make_inverse_operator(raw.info, fwd, noise_cov,
                                         depth=None, fixed=False)


stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, inv_method,
                            pick_ori=None, return_generator=True)

# Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi
labels_parc = mne.read_labels_from_annot(subject, parc=parc,
                                         subjects_dir=subjects_dir)

# Average the source estimates within each label of the cortical parcellation
# and each sub structures contained in the src space
# If mode = 'mean_flip' this option is used only for the cortical label
src = inverse_operator['src']
label_ts = mne.extract_label_time_course(stcs, labels_parc, src,
                                         mode='mean_flip',
                                         allow_empty=True,
                                         return_generator=False)

# We compute the connectivity in the alpha band and plot it using a circular
# graph layout
fmin = 8.
fmax = 13.
sfreq = raw.info['sfreq']  # the sampling frequency
con, freqs, times, n_epochs, n_tapers = spectral_connectivity(
    label_ts, method='pli', mode='multitaper', sfreq=sfreq, fmin=fmin,
    fmax=fmax, faverage=True, mt_adaptive=True, n_jobs=1)

# We create a list of Label containing also the sub structures
labels_aseg = mne.get_volume_labels_from_src(src, subject, subjects_dir)
labels = labels_parc + labels_aseg

# read colors
node_colors = [label.color for label in labels]

# We reorder the labels based on their location in the left hemi
label_names = [label.name for label in labels]
lh_labels = [name for name in label_names if name.endswith('lh')]
rh_labels = [name for name in label_names if name.endswith('rh')]

# Get the y-location of the label
label_ypos_lh = list()
for name in lh_labels:
    idx = label_names.index(name)
    ypos = np.mean(labels[idx].pos[:, 1])
    label_ypos_lh.append(ypos)
try:
    idx = label_names.index('Brain-Stem')
except ValueError:
    pass
else:
    ypos = np.mean(labels[idx].pos[:, 1])
    lh_labels.append('Brain-Stem')
    label_ypos_lh.append(ypos)


# Reorder the labels based on their location
lh_labels = [label for (yp, label) in sorted(zip(label_ypos_lh, lh_labels))]

# For the right hemi
rh_labels = [label[:-2] + 'rh' for label in lh_labels
             if label != 'Brain-Stem' and label[:-2] + 'rh' in rh_labels]

# Save the plot order
node_order = list()
node_order = lh_labels[::-1] + rh_labels

node_angles = circular_layout(label_names, node_order, start_pos=90,
                              group_boundaries=[0, len(label_names) // 2])


# Plot the graph using node colors from the FreeSurfer parcellation. We only
# show the 300 strongest connections.
conmat = con[:, :, 0]
fig = plt.figure(num=None, figsize=(8, 8), facecolor='black')
plot_connectivity_circle(conmat, label_names, n_lines=300,
                         node_angles=node_angles, node_colors=node_colors,
                         title='All-to-All Connectivity left-Auditory '
                         'Condition (PLI)', fig=fig, interactive=False)

Save the figure (optional)

By default matplotlib does not save using the facecolor, even though this was set when the figure was generated. If not set via savefig, the labels, title, and legend will be cut off from the output png file.


In [ ]:
# fname_fig = data_path + '/MEG/sample/plot_mixed_connect.png'
# plt.savefig(fname_fig, facecolor='black')