In [ ]:
%matplotlib inline
In [ ]:
# Authors: Pierre Ablin <pierreablin@gmail.com>
#
# License: BSD (3-clause)
from time import time
import mne
from mne.preprocessing import ICA
from mne.datasets import sample
print(__doc__)
Read and preprocess the data. Preprocessing consists of:
In [ ]:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info)
reject = dict(mag=5e-12, grad=4000e-13)
raw.filter(1, 30, fir_design='firwin')
Define a function that runs ICA on the raw MEG data and plots the components
In [ ]:
def run_ica(method):
ica = ICA(n_components=20, method=method, random_state=0)
t0 = time()
ica.fit(raw, picks=picks, reject=reject)
fit_time = time() - t0
title = ('ICA decomposition using %s (took %.1fs)' % (method, fit_time))
ica.plot_components(title=title)
FastICA
In [ ]:
run_ica('fastica')
Picard
In [ ]:
run_ica('picard')
Infomax
In [ ]:
run_ica('infomax')
Extended Infomax
In [ ]:
run_ica('extended-infomax')