In [ ]:
%matplotlib inline

Cross-hemisphere comparison

This example illustrates how to visualize the difference between activity in the left and the right hemisphere. The data from the right hemisphere is mapped to the left hemisphere, and then the difference is plotted. For more information see :func:mne.compute_morph_matrix.


In [ ]:
# Author: Christian Brodbeck <christianbrodbeck@nyu.edu>
#
# License: BSD (3-clause)

import mne


data_dir = mne.datasets.sample.data_path()
subjects_dir = data_dir + '/subjects'
stc_path = data_dir + '/MEG/sample/sample_audvis-meg-eeg'

stc = mne.read_source_estimate(stc_path, 'sample')

# First, morph the data to fsaverage_sym, for which we have left_right
# registrations:
stc = stc.morph('fsaverage_sym', subjects_dir=subjects_dir, smooth=5)

# Compute a morph-matrix mapping the right to the left hemisphere. Use the
# vertices parameters to determine source and target hemisphere:
mm = mne.compute_morph_matrix(
    'fsaverage_sym', 'fsaverage_sym', xhemi=True,  # cross-hemisphere morphing
    vertices_from=[[], stc.vertices[1]],  # from the right hemisphere
    vertices_to=[stc.vertices[0], []],  # to the left hemisphere
    subjects_dir=subjects_dir)

# SourceEstimate on the left hemisphere:
stc_lh = mne.SourceEstimate(stc.lh_data, [stc.vertices[0], []], stc.tmin,
                            stc.tstep, stc.subject)
# SourceEstimate of the right hemisphere, morphed to the left:
stc_rh_on_lh = mne.SourceEstimate(mm * stc.rh_data, [stc.vertices[0], []],
                                  stc.tmin, stc.tstep, stc.subject)
# Since both STCs are now on the same hemisphere we can subtract them:
diff = stc_lh - stc_rh_on_lh

diff.plot(hemi='lh', subjects_dir=subjects_dir, initial_time=0.07,
          size=(800, 600))