In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.minimum_norm import (make_inverse_operator, apply_inverse,
write_inverse_operator)
# sphinx_gallery_thumbnail_number = 9
Process MEG data
In [ ]:
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname) # already has an average reference
events = mne.find_events(raw, stim_channel='STI 014')
event_id = dict(aud_r=1) # event trigger and conditions
tmin = -0.2 # start of each epoch (200ms before the trigger)
tmax = 0.5 # end of each epoch (500ms after the trigger)
raw.info['bads'] = ['MEG 2443', 'EEG 053']
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True,
exclude='bads')
baseline = (None, 0) # means from the first instant to t = 0
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
baseline=baseline, reject=reject)
In [ ]:
noise_cov = mne.compute_covariance(
epochs, tmax=0., method=['shrunk', 'empirical'])
fig_cov, fig_spectra = mne.viz.plot_cov(noise_cov, raw.info)
In [ ]:
evoked = epochs.average()
evoked.plot()
evoked.plot_topomap(times=np.linspace(0.05, 0.15, 5), ch_type='mag')
# Show whitening
evoked.plot_white(noise_cov)
In [ ]:
# Read the forward solution and compute the inverse operator
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif'
fwd = mne.read_forward_solution(fname_fwd)
fwd = mne.convert_forward_solution(fwd, surf_ori=True)
# Restrict forward solution as necessary for MEG
fwd = mne.pick_types_forward(fwd, meg=True, eeg=False)
# make an MEG inverse operator
info = evoked.info
inverse_operator = make_inverse_operator(info, fwd, noise_cov,
loose=0.2, depth=0.8)
write_inverse_operator('sample_audvis-meg-oct-6-inv.fif',
inverse_operator)
In [ ]:
method = "dSPM"
snr = 3.
lambda2 = 1. / snr ** 2
stc = apply_inverse(evoked, inverse_operator, lambda2,
method=method, pick_ori=None)
del fwd, epochs # to save memory
In [ ]:
plt.figure()
plt.plot(1e3 * stc.times, stc.data[::100, :].T)
plt.xlabel('time (ms)')
plt.ylabel('%s value' % method)
plt.show()
Here we use peak getter to move visualization to the time point of the peak and draw a marker at the maximum peak vertex.
In [ ]:
vertno_max, time_max = stc.get_peak(hemi='rh')
subjects_dir = data_path + '/subjects'
brain = stc.plot(surface='inflated', hemi='rh', subjects_dir=subjects_dir,
clim=dict(kind='value', lims=[8, 12, 15]),
initial_time=time_max, time_unit='s')
brain.add_foci(vertno_max, coords_as_verts=True, hemi='rh', color='blue',
scale_factor=0.6)
brain.show_view('lateral')
In [ ]:
fs_vertices = [np.arange(10242)] * 2 # fsaverage is special this way
morph_mat = mne.compute_morph_matrix('sample', 'fsaverage', stc.vertices,
fs_vertices, smooth=None,
subjects_dir=subjects_dir)
stc_fsaverage = stc.morph_precomputed('fsaverage', fs_vertices, morph_mat)
brain_fsaverage = stc_fsaverage.plot(
surface='inflated', hemi='rh', subjects_dir=subjects_dir,
clim=dict(kind='value', lims=[8, 12, 15]), initial_time=time_max,
time_unit='s', size=(800, 800), smoothing_steps=5)
brain_fsaverage.show_view('lateral')
The pick_ori
parameter of the
:func:mne.minimum_norm.apply_inverse
function controls
the orientation of the dipoles. One useful setting is pick_ori='vector'
,
which will return an estimate that does not only contain the source power at
each dipole, but also the orientation of the dipoles.
In [ ]:
stc_vec = apply_inverse(evoked, inverse_operator, lambda2,
method=method, pick_ori='vector')
stc_vec.plot(hemi='rh', subjects_dir=subjects_dir,
clim=dict(kind='value', lims=[8, 12, 15]),
initial_time=time_max, time_unit='s')
Note that there is a relationship between the orientation of the dipoles and the surface of the cortex. For this reason, we do not use an inflated cortical surface for visualization, but the original surface used to define the source space.
For more information about dipole orientations, see
tut_dipole_orentiations
.