In [ ]:
%matplotlib inline

======================================

Getting averaging info from .fif files

Parse averaging information defined in Elekta Vectorview/TRIUX DACQ (data acquisition). Extract and average epochs accordingly. Modify some averaging parameters and get epochs.


In [ ]:
# Author: Jussi Nurminen (jnu@iki.fi)
#
# License: BSD (3-clause)


import mne
import os
from mne.datasets import multimodal

fname_raw = os.path.join(multimodal.data_path(), 'multimodal_raw.fif')


print(__doc__)

Read raw file


In [ ]:
raw = mne.io.read_raw_fif(fname_raw)

Check DACQ defined averaging categories and other info


In [ ]:
print(raw.acqparser)

Extract epochs corresponding to a category


In [ ]:
cond = raw.acqparser.get_condition(raw, 'Auditory right')
epochs = mne.Epochs(raw, **cond)
epochs.average().plot_topo(background_color='w')

Get epochs from all conditions, average


In [ ]:
evokeds = []
for cat in raw.acqparser.categories:
    cond = raw.acqparser.get_condition(raw, cat)
    # copy (supported) rejection parameters from DACQ settings
    epochs = mne.Epochs(raw, reject=raw.acqparser.reject,
                        flat=raw.acqparser.flat, **cond)
    evoked = epochs.average()
    evoked.comment = cat['comment']
    evokeds.append(evoked)
# save all averages to an evoked fiff file
# fname_out = 'multimodal-ave.fif'
# mne.write_evokeds(fname_out, evokeds)

Make a new averaging category


In [ ]:
newcat = dict()
newcat['comment'] = 'Visual lower left, longer epochs'
newcat['event'] = 3  # reference event
newcat['start'] = -.2  # epoch start rel. to ref. event (in seconds)
newcat['end'] = .7  # epoch end
newcat['reqevent'] = 0  # additional required event; 0 if none
newcat['reqwithin'] = .5  # ...required within .5 sec (before or after)
newcat['reqwhen'] = 2  # ...required before (1) or after (2) ref. event
newcat['index'] = 9  # can be set freely

cond = raw.acqparser.get_condition(raw, newcat)
epochs = mne.Epochs(raw, reject=raw.acqparser.reject,
                    flat=raw.acqparser.flat, **cond)
epochs.average().plot()