In [ ]:
%matplotlib inline

Decoding source space data

Decoding to MEG data in source space on the left cortical surface. Here univariate feature selection is employed for speed purposes to confine the classification to a small number of potentially relevant features. The classifier then is trained to selected features of epochs in source space.


In [ ]:
# Author: Denis A. Engemann <denis.engemann@gmail.com>
#         Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Jean-Remi King <jeanremi.king@gmail.com>
#
# License: BSD (3-clause)
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.linear_model import LogisticRegression
import mne
from mne import io
from mne.datasets import sample
from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator
from mne.decoding import (cross_val_multiscore, LinearModel, SlidingEstimator,
                          get_coef)

print(__doc__)

data_path = sample.data_path()
fname_fwd = data_path + 'MEG/sample/sample_audvis-meg-oct-6-fwd.fif'
fname_evoked = data_path + '/MEG/sample/sample_audvis-ave.fif'
subjects_dir = data_path + '/subjects'
subject = os.environ['SUBJECT'] = subjects_dir + '/sample'
os.environ['SUBJECTS_DIR'] = subjects_dir

Set parameters


In [ ]:
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif'
label_names = 'Aud-rh', 'Vis-rh'
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'

tmin, tmax = -0.2, 0.5
event_id = dict(aud_r=2, vis_r=4)  # load contra-lateral conditions

# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname, preload=True)
raw.filter(0.1, None, fir_design='firwin')
events = mne.read_events(event_fname)

# Set up pick list: MEG - bad channels (modify to your needs)
raw.info['bads'] += ['MEG 2443']  # mark bads
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
                       exclude='bads')

# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=None, preload=True,
                    reject=dict(grad=4000e-13, eog=150e-6),
                    decim=5)  # decimate to save memory and increase speed

Compute inverse solution


In [ ]:
snr = 3.0
noise_cov = mne.read_cov(fname_cov)
inverse_operator = read_inverse_operator(fname_inv)

stcs = apply_inverse_epochs(epochs, inverse_operator,
                            lambda2=1.0 / snr ** 2, verbose=False,
                            method="dSPM", pick_ori="normal")

Decoding in sensor space using a logistic regression


In [ ]:
# Retrieve source space data into an array
X = np.array([stc.lh_data for stc in stcs])  # only keep left hemisphere
y = epochs.events[:, 2]

# prepare a series of classifier applied at each time sample
clf = make_pipeline(StandardScaler(),  # z-score normalization
                    SelectKBest(f_classif, k=500),  # select features for speed
                    LinearModel(LogisticRegression(C=1)))
time_decod = SlidingEstimator(clf, scoring='roc_auc')

# Run cross-validated decoding analyses:
scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)

# Plot average decoding scores of 5 splits
fig, ax = plt.subplots(1)
ax.plot(epochs.times, scores.mean(0), label='score')
ax.axhline(.5, color='k', linestyle='--', label='chance')
ax.axvline(0, color='k')
plt.legend()

To investigate weights, we need to retrieve the patterns of a fitted model


In [ ]:
# The fitting needs not be cross validated because the weights are based on
# the training sets
time_decod.fit(X, y)

# Retrieve patterns after inversing the z-score normalization step:
patterns = get_coef(time_decod, 'patterns_', inverse_transform=True)

stc = stcs[0]  # for convenience, lookup parameters from first stc
vertices = [stc.lh_vertno, np.array([], int)]  # empty array for right hemi
stc_feat = mne.SourceEstimate(np.abs(patterns), vertices=vertices,
                              tmin=stc.tmin, tstep=stc.tstep, subject='sample')

brain = stc_feat.plot(views=['lat'], transparent=True,
                      initial_time=0.1, time_unit='s')