In [ ]:
%matplotlib inline

.. _tut_info_objects:

The :class:Info <mne.Info> data structure


In [ ]:
from __future__ import print_function

import mne
import os.path as op

The :class:Info <mne.Info> data object is typically created when data is imported into MNE-Python and contains details such as:

  • date, subject information, and other recording details
  • the samping rate
  • information about the data channels (name, type, position, etc.)
  • digitized points
  • sensor–head coordinate transformation matrices

and so forth. See the :class:the API reference <mne.Info> for a complete list of all data fields. Once created, this object is passed around throughout the data analysis pipeline.

It behaves as a nested Python dictionary:


In [ ]:
# Read the info object from an example recording
info = mne.io.read_info(
    op.join(mne.datasets.sample.data_path(), 'MEG', 'sample',
            'sample_audvis_raw.fif'), verbose=False)

List all the fields in the info object


In [ ]:
print('Keys in info dictionary:\n', info.keys())

Obtain the sampling rate of the data


In [ ]:
print(info['sfreq'], 'Hz')

List all information about the first data channel


In [ ]:
print(info['chs'][0])

.. _picking_channels:

Obtaining subsets of channels

There are a number of convenience functions to obtain channel indices, given an :class:mne.Info object.

Get channel indices by name


In [ ]:
channel_indices = mne.pick_channels(info['ch_names'], ['MEG 0312', 'EEG 005'])

Get channel indices by regular expression


In [ ]:
channel_indices = mne.pick_channels_regexp(info['ch_names'], 'MEG *')

Get channel indices by type


In [ ]:
channel_indices = mne.pick_types(info, meg=True)  # MEG only
channel_indices = mne.pick_types(info, eeg=True)  # EEG only

MEG gradiometers and EEG channels


In [ ]:
channel_indices = mne.pick_types(info, meg='grad', eeg=True)

Get a dictionary of channel indices, grouped by channel type


In [ ]:
channel_indices_by_type = mne.io.pick.channel_indices_by_type(info)
print('The first three magnetometers:', channel_indices_by_type['mag'][:3])

Obtaining information about channels


In [ ]:
# Channel type of a specific channel
channel_type = mne.io.pick.channel_type(info, 75)
print('Channel #75 is of type:', channel_type)

Channel types of a collection of channels


In [ ]:
meg_channels = mne.pick_types(info, meg=True)[:10]
channel_types = [mne.io.pick.channel_type(info, ch) for ch in meg_channels]
print('First 10 MEG channels are of type:\n', channel_types)

Dropping channels from an info structure

It is possible to limit the info structure to only include a subset of channels with the :func:mne.pick_info function:


In [ ]:
# Only keep EEG channels
eeg_indices = mne.pick_types(info, meg=False, eeg=True)
reduced_info = mne.pick_info(info, eeg_indices)

print(reduced_info)