In [ ]:
%matplotlib inline
In [ ]:
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis A. Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)
import mne
from mne import io
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
Set parameters
In [ ]:
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
tmin, tmax = -0.2, 0.5
# Select events to extract epochs from.
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2}
# Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)
# Plot raw data
raw.plot(events=events, event_color={1: 'cyan', -1: 'lightgray'})
# Set up pick list: EEG + STI 014 - bad channels (modify to your needs)
include = [] # or stim channels ['STI 014']
raw.info['bads'] = ['MEG 2443', 'EEG 053'] # set bads
# pick EEG and MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=True, stim=False, eog=True,
include=include, exclude='bads')
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=dict(eeg=80e-6, eog=150e-6),
preload=True)
# Plot epochs.
epochs.plot(title='Auditory left/right')
# Look at channels that caused dropped events, showing that the subject's
# blinks were likely to blame for most epochs being dropped
epochs.drop_bad_epochs()
epochs.plot_drop_log(subject='sample')
# Average epochs and get evoked data corresponding to the left stimulation
evoked = epochs['Left'].average()
evoked.save('sample_audvis_eeg-ave.fif') # save evoked data to disk
View evoked response
In [ ]:
evoked.plot(gfp=True)
Save evoked responses for different conditions to disk
In [ ]:
# average epochs and get Evoked datasets
evokeds = [epochs[cond].average() for cond in ['Left', 'Right']]
# save evoked data to disk
mne.write_evokeds('sample_auditory_and_visual_eeg-ave.fif', evokeds)