In [ ]:
%matplotlib inline

.. _tut_artifacts_correct_ssp:

Artifact Correction with SSP


In [ ]:
import numpy as np

import mne
from mne.datasets import sample
from mne.preprocessing import compute_proj_ecg, compute_proj_eog

# getting some data ready
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.pick_types(meg=True, ecg=True, eog=True, stim=True)

Compute SSP projections


In [ ]:
projs, events = compute_proj_ecg(raw, n_grad=1, n_mag=1, average=True)
print(projs)

ecg_projs = projs[-2:]
mne.viz.plot_projs_topomap(ecg_projs)

# Now for EOG

projs, events = compute_proj_eog(raw, n_grad=1, n_mag=1, average=True)
print(projs)

eog_projs = projs[-2:]
mne.viz.plot_projs_topomap(eog_projs)

Apply SSP projections

MNE is handling projections at the level of the info, so to register them populate the list that you find in the 'proj' field


In [ ]:
raw.info['projs'] += eog_projs + ecg_projs

Yes this was it. Now MNE will apply the projs on demand at any later stage, so watch out for proj parmeters in functions or to it explicitly with the .apply_proj method

Demonstrate SSP cleaning on some evoked data


In [ ]:
events = mne.find_events(raw, stim_channel='STI 014')
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
# this can be highly data dependent
event_id = {'auditory/left': 1}

epochs_no_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,
                            proj=False, baseline=(None, 0), reject=reject)
epochs_no_proj.average().plot(spatial_colors=True)


epochs_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5, proj=True,
                         baseline=(None, 0), reject=reject)
epochs_proj.average().plot(spatial_colors=True)

Looks cool right? It is however often not clear how many components you should take and unfortunately this can have bad consequences as can be seen interactively using the delayed SSP mode:


In [ ]:
evoked = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,
                    proj='delayed', baseline=(None, 0),
                    reject=reject).average()

# set time instants in seconds (from 50 to 150ms in a step of 10ms)
times = np.arange(0.05, 0.15, 0.01)

evoked.plot_topomap(times, proj='interactive')

now you should see checkboxes. Remove a few SSP and see how the auditory pattern suddenly drops off