In [ ]:
%matplotlib inline
In [ ]:
import numpy as np
import mne
from mne.datasets import sample
from mne.preprocessing import compute_proj_ecg, compute_proj_eog
# getting some data ready
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
raw.pick_types(meg=True, ecg=True, eog=True, stim=True)
In [ ]:
projs, events = compute_proj_ecg(raw, n_grad=1, n_mag=1, average=True)
print(projs)
ecg_projs = projs[-2:]
mne.viz.plot_projs_topomap(ecg_projs)
# Now for EOG
projs, events = compute_proj_eog(raw, n_grad=1, n_mag=1, average=True)
print(projs)
eog_projs = projs[-2:]
mne.viz.plot_projs_topomap(eog_projs)
In [ ]:
raw.info['projs'] += eog_projs + ecg_projs
Yes this was it. Now MNE will apply the projs on demand at any later stage,
so watch out for proj parmeters in functions or to it explicitly
with the .apply_proj method
In [ ]:
events = mne.find_events(raw, stim_channel='STI 014')
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
# this can be highly data dependent
event_id = {'auditory/left': 1}
epochs_no_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,
proj=False, baseline=(None, 0), reject=reject)
epochs_no_proj.average().plot(spatial_colors=True)
epochs_proj = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5, proj=True,
baseline=(None, 0), reject=reject)
epochs_proj.average().plot(spatial_colors=True)
Looks cool right? It is however often not clear how many components you should take and unfortunately this can have bad consequences as can be seen interactively using the delayed SSP mode:
In [ ]:
evoked = mne.Epochs(raw, events, event_id, tmin=-0.2, tmax=0.5,
proj='delayed', baseline=(None, 0),
reject=reject).average()
# set time instants in seconds (from 50 to 150ms in a step of 10ms)
times = np.arange(0.05, 0.15, 0.01)
evoked.plot_topomap(times, proj='interactive')
now you should see checkboxes. Remove a few SSP and see how the auditory pattern suddenly drops off