In [1]:
%matplotlib inline
import os
import numpy as np
import flopy
workspace = os.path.join('data')
#make sure workspace directory exists
if not os.path.exists(workspace):
os.makedirs(workspace)
In [2]:
# Input variables for the Henry Problem
Lx = 2.
Lz = 1.
nlay = 50
nrow = 1
ncol = 100
delr = Lx / ncol
delc = 1.0
delv = Lz / nlay
henry_top = 1.
henry_botm = np.linspace(henry_top - delv, 0., nlay)
qinflow = 5.702 #m3/day
dmcoef = 0.57024 #m2/day Could also try 1.62925 as another case of the Henry problem
hk = 864. #m/day
In [3]:
# Create the basic MODFLOW model structure
modelname = 'henry'
mf = flopy.modflow.Modflow(modelname, exe_name='swt_v4', model_ws=workspace)
# Add DIS package to the MODFLOW model
dis = flopy.modflow.ModflowDis(mf, nlay, nrow, ncol, nper=1, delr=delr,
delc=delc, laycbd=0, top=henry_top,
botm=henry_botm, perlen=1.5, nstp=15)
# Variables for the BAS package
ibound = np.ones((nlay, nrow, ncol), dtype=np.int32)
ibound[:, :, -1] = -1
bas = flopy.modflow.ModflowBas(mf, ibound, 0)
# Add LPF package to the MODFLOW model
lpf = flopy.modflow.ModflowLpf(mf, hk=hk, vka=hk)
# Add PCG Package to the MODFLOW model
pcg = flopy.modflow.ModflowPcg(mf, hclose=1.e-8)
# Add OC package to the MODFLOW model
oc = flopy.modflow.ModflowOc(mf,
stress_period_data={(0, 0): ['save head', 'save budget']},
compact=True)
# Create WEL and SSM data
itype = flopy.mt3d.Mt3dSsm.itype_dict()
wel_data = {}
ssm_data = {}
wel_sp1 = []
ssm_sp1 = []
for k in xrange(nlay):
wel_sp1.append([k, 0, 0, qinflow / nlay])
ssm_sp1.append([k, 0, 0, 0., itype['WEL']])
ssm_sp1.append([k, 0, ncol - 1, 35., itype['BAS6']])
wel_data[0] = wel_sp1
ssm_data[0] = ssm_sp1
wel = flopy.modflow.ModflowWel(mf, ipakcb=51, stress_period_data=wel_data)
In [4]:
# Create the basic MT3DMS model structure
mt = flopy.mt3d.Mt3dms(modelname, 'nam_mt3dms', mf, model_ws=workspace)
btn = flopy.mt3d.Mt3dBtn(mt, nprs=-5, prsity=0.35, sconc=35., ifmtcn=0,
chkmas=False, nprobs=10, nprmas=10, dt0=0.001)
adv = flopy.mt3d.Mt3dAdv(mt, mixelm=0)
dsp = flopy.mt3d.Mt3dDsp(mt, al=0., trpt=1., trpv=1., dmcoef=dmcoef)
gcg = flopy.mt3d.Mt3dGcg(mt, iter1=500, mxiter=1, isolve=1, cclose=1e-7)
ssm = flopy.mt3d.Mt3dSsm(mt, stress_period_data=ssm_data)
# Create the SEAWAT model structure
mswt = flopy.seawat.Seawat(modelname, 'nam_swt', mf, mt, model_ws=workspace, exe_name='swt_v4')
vdf = flopy.seawat.SeawatVdf(mswt, iwtable=0, densemin=0, densemax=0,
denseref=1000., denseslp=0.7143, firstdt=1e-3)
In [5]:
# Write the input files
mf.write_input()
mt.write_input()
mswt.write_input()
In [6]:
# Try to delete the output files, to prevent accidental use of older files
try:
os.remove(os.path.join(workspace, 'MT3D001.UCN'))
os.remove(os.path.join(workspace, modelname + '.hds'))
os.remove(os.path.join(workspace, modelname + '.cbc'))
except:
pass
In [7]:
mswt.run_model(silent=True)
#import subprocess as sp
#proc = sp.check_call(['swt_v4', mswt.namefile], cwd=mswt.model_ws) #stdout=sp.PIPE)
Out[7]:
In [8]:
# Post-process the results
import numpy as np
import flopy.utils.binaryfile as bf
# Load data
ucnobj = bf.UcnFile(os.path.join(workspace, 'MT3D001.UCN'))
times = ucnobj.get_times()
concentration = ucnobj.get_data(totim=times[-1])
cbbobj = bf.CellBudgetFile(os.path.join(workspace, 'henry.cbc'))
times = cbbobj.get_times()
qx = cbbobj.get_data(text='flow right face', totim=times[-1])[0]
qz = cbbobj.get_data(text='flow lower face', totim=times[-1])[0]
# Average flows to cell centers
qx_avg = np.empty(qx.shape, dtype=qx.dtype)
qx_avg[:, :, 1:] = 0.5 * (qx[:, :, 0:ncol-1] + qx[:, :, 1:ncol])
qx_avg[:, :, 0] = 0.5 * qx[:, :, 0]
qz_avg = np.empty(qz.shape, dtype=qz.dtype)
qz_avg[1:, :, :] = 0.5 * (qz[0:nlay-1, :, :] + qz[1:nlay, :, :])
qz_avg[0, :, :] = 0.5 * qz[0, :, :]
In [9]:
# Make the plot
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1, 1, 1, aspect='equal')
ax.imshow(concentration[:, 0, :], interpolation='nearest',
extent=(0, Lx, 0, Lz))
y, x, z = dis.get_node_coordinates()
X, Z = np.meshgrid(x, z[:, 0, 0])
iskip = 3
ax.quiver(X[::iskip, ::iskip], Z[::iskip, ::iskip],
qx_avg[::iskip, 0, ::iskip], -qz_avg[::iskip, 0, ::iskip],
color='w', scale=5, headwidth=3, headlength=2,
headaxislength=2, width=0.0025)
plt.savefig(os.path.join(workspace, 'henry.png'))
plt.show()